Abstract:
The present invention relates to a highly-efficient system for performing single-error correction when utilized with a memory system including a memory equipped with error-detection circuitry for use with rotationally-encoded, single-error correction, double-error detection Hamming coded data wherein said memory system circuitry includes means for developing syndrome bits, the patterns of which indicate faulty operation. Hardware is included for first identifying the specific byte which contains the error and still further hardware is provided to locate the particular bit which is erroneous. By efficient use of the rotational characteristic of the present coding scheme, correction is made only when necessary and only that hardware necessary to correct a single byte is provided in the correction circuitry.
Abstract:
A fail-safe decoder utilizing individual fail-safe logic components. The decoder is designed of layers of alternate failure mode logic circuits so that a failure of any of the individual logic elements will always produce an error signal if said failure would cause an output error.
Abstract:
An SEC/DED error detection and data translation mechanism is described. By the use of unique circuit design features, the same logical circuitry is capable of automatically taking Hamming encoded data from memory and parity encoding same for transmission elsewhere in the system as well as forming the necessary syndromes for purposes of error detection and correction. The same circuitry is capable of receiving encoded data from elsewhere in the system, first checking for any parity error and, if parity is proper, will generate the necessary Hamming check bits for storing in the memory together with the data information. The disclosed circuitry, by means of the unique partitioning thereof, separates the error detection and correction functions. It also generates parity bits essentially in parallel with error detection after a memory read cycle with the result that the data is propagated through the correction circuitry only when a single data bit error is detected.
Abstract:
The present invention relates to a logic circuit for testing the condition of a set of self-testing logic variables. More specifically, it relates to such a logic circuit for forming an Exclusive-Or function on such variables. The circuit has particular utility in high reliability systems for checking the conditions of a plurality of line pairs wherein each line pair constitutes a morphic self-testing variable and wherein the circuit output is itself a morphic self-testing function.
Abstract:
A translator for a digital memory system which performs single error correction and double error detection (SEC/DED) upon the stored word in converting it into a parity-encoded form and in addition detects circuit failures in the translator itself. The translator also takes a parity-encoded word, checks the parity encoding, translates the word into an SEC/DED form and writes it into memory. The translator consists of a syndrome generator, a single error corrector, a double error detector, a byte parity encoder, a byte parity checker and a circuit to implement a check on the parity-encoded form of the word which is read. The paritycheck matrix used in formulating the SEC/DED encoded form of the word has the following properties: Property 1: The columns of the parity check matrix are a minimum Hamming distance of 2 apart. Property 2: Each column of the parity check matrix is odd weight. Property 3: If there are r check bits C(j), m bytes with parity bits P(i), and odd parity is used, then