Abstract:
A system provides overlaid haptic effects. The system determines a primary content and a primary haptic effect associated with the primary content. The system also determines a secondary content and a secondary haptic effect associated with the secondary content. Subsequently, the system outputs the secondary content concurrently with the primary content, and also outputs the secondary haptic effect concurrently with the primary haptic effect on at least one haptic output device.
Abstract:
A feedback control system is provided. The feedback control system receives a user input. The feedback control system determines a context. The feedback control system displays a control in response to the user input and based on the context. The feedback control system adjusts a feedback parameter according to the control, where the control is configured to adjust feedback output to a user based on the adjusted feedback parameter.
Abstract:
The disclosure relates to systems and methods of providing haptic feedback based on media content and one or more external parameters used to customize the haptic feedback. The system may modify or otherwise alter haptic feedback that is determined using the media content alone. In other words, the system may use both the media content and the external parameters to determine haptic feedback that should be output to the user or others. The external parameters may include, for example, sensor information, customization information, and/or other external parameters that may be used to customize the haptic feedback.
Abstract:
A system provides haptic feedback based on media content. The system processes the media content into components including a first component and a second component. The system further determines a first priority value related to the first component and a second priority value related to the second component. The system further compares the first priority value with the second priority value. The system further generates a first control signal and a second control signal based on the comparison, where the first control signal is configured to cause a first haptic feedback to be output and the second control signal is configured to cause a second haptic feedback to be output that is the same or different than the first haptic feedback.
Abstract:
A system is provided that converts an input into one or more haptic effects using segmenting and combining. The system receives an input. The system further segments the input into a plurality of input sub-signals. The system further converts the plurality of input sub-signals into a haptic signal. The system further generates the one or more haptic effects based on the haptic signal.
Abstract:
A system provides haptic feedback based on media content. The system processes the media content into components including a first component and a second component. The system further determines a first priority value related to the first component and a second priority value related to the second component. The system further compares the first priority value with the second priority value. The system further generates a first control signal and a second control signal based on the comparison, where the first control signal is configured to cause a first haptic feedback to be output and the second control signal is configured to cause a second haptic feedback to be output that is the same or different than the first haptic feedback.
Abstract:
A system provides haptic feedback based on media content. The system processes the media content into components including a first component and a second component. The system further determines a first priority value related to the first component and a second priority value related to the second component. The system further compares the first priority value with the second priority value. The system further generates a first control signal and a second control signal based on the comparison, where the first control signal is configured to cause a first haptic feedback to be output and the second control signal is configured to cause a second haptic feedback to be output that is the same or different than the first haptic feedback.
Abstract:
A system is provided that produces haptic effects. The system receives an audio signal that includes a low-frequency effects audio signal. The system further extracts the low-frequency effects audio signal from the audio signal. The system further converts the low-frequency effects audio signal into a haptic signal by shifting frequencies of the low-frequency effects audio signal to frequencies within a target frequency range of a haptic output device. The system further sends the haptic signal to the haptic output device, where the haptic signal causes the haptic output device to output one or more haptic effects.
Abstract:
A system receives a multiplexed signal with two or more different types of haptic signals encoded therein. Each type of haptic signal represents a haptic effect for different types of haptic output devices. The system determines a target haptic output device located on a haptic playback device. The system demultiplexes the multiplexed signal into at least the type of haptic signal corresponding to the target output device. The system provides the demultiplexed haptic signal to the target haptic output device.
Abstract:
A system includes an eye-tracking device configured to track a user's eye gaze while looking at media content comprising an image, and a processor configured to execute one or more computer program modules, including a content determination module that, when executed by the processor, analyzes the media content to identify the image, an eye gaze determination module that, when executed by the processor, determines a gaze location of the user's eye gaze while looking at the image, and an event determination module that, when executed by the processor, determines an event to trigger based on the identification of the image and the gaze location.