Abstract:
Systems, devices, and methods for providing limited duration haptic effects are disclosed. Systems for providing limited duration haptic effects include sensors, control circuits, and vibration actuators configured closed loop feedback control of the vibration actuators. The sensors are configured to measure motion characteristics induced by the vibration actuators. The control circuits are configured to receive motion characteristic information from the sensors and provide closed loop feedback control of the vibration actuators. Closed loop feedback control permits precise control of vibration actuator output during limited duration haptic effects.
Abstract:
A system includes a recorder configured to record audio and/or video of a subject of interest and output a recording of the subject of interest and a non-contact sensor associated with the recorder. The non-contact sensor is constructed and arranged to measure movement and/or vibration of the subject of interest from substantially the same perspective and at the same time as the recorder. The system includes a controller configured to transform the measured movement and/or vibration of the subject of interest measured by the non-contact sensor into a tactile data stream for sending to a haptic display device for playback with the recording of the subject of interest by the recorder and providing haptic effects corresponding to the measured movement and/or vibration to a user of the haptic display device in synchronization with the recording.
Abstract:
A method and apparatus of actuator mechanisms for a multi-touch tactile touch panel are disclosed. The tactile touch panel includes an electrical insulated layer and a tactile layer. The top surface of the electrical insulated layer is capable of receiving an input from a user. The tactile layer includes a grid or an array of haptic cells. The top surface of the haptic layer is situated adjacent to the bottom surface of the electrical insulated layer, while the bottom surface of the haptic layer is situated adjacent to a display. Each haptic cell further includes at least one piezoelectric material, Micro-Electro-Mechanical Systems (“MEMS”) element, thermal fluid pocket, MEMS pump, resonant device, variable porosity membrane, laminar flow modulation, or the like. Each haptic cell is configured to provide a haptic effect independent of other haptic cells in the tactile layer.
Abstract:
A method for synchronizing haptic effects with at least one media component in a media transport stream includes identifying a series of video frames containing imaging information and/or a series of audio frames containing sound information in the media transport stream; identifying a series of haptic frames containing force feedback information in the media transport stream; and synchronizing the force feedback information in response to the imaging information and/or sound information.
Abstract:
A system is provided that encodes one or more dynamic haptic effects. The system defines a dynamic haptic effect as including a plurality of key frames, where each key frame includes an interpolant value and a corresponding haptic effect. An interpolant value is a value that specifies where an interpolation occurs. The system generates a haptic effect file, and stores the dynamic haptic effect within the haptic effect file.
Abstract:
A system generates a haptic signal. The system receives an audio signal, pre-processes the audio signal by modifying the audio signal to create a modified audio signal, and maps the modified audio signal to a haptic signal. The system then sends the haptic signal to an actuator to generate one or more haptic effects.
Abstract:
A system includes a recorder configured to record audio and/or video of a subject of interest and output a recording of the subject of interest and a non-contact sensor associated with the recorder. The non-contact sensor is constructed and arranged to measure movement and/or vibration of the subject of interest from substantially the same perspective and at the same time as the recorder. The system includes a controller configured to transform the measured movement and/or vibration of the subject of interest measured by the non-contact sensor into a tactile data stream for sending to a haptic display device for playback with the recording of the subject of interest by the recorder and providing haptic effects corresponding to the measured movement and/or vibration to a user of the haptic display device in synchronization with the recording.
Abstract:
Systems and methods for mapping message contents to virtual physical properties for vibrotactile messaging are disclosed. For example, one disclosed method includes the steps of receiving a sensor signal from a sensor, the sensor configured to detect an interaction with a messaging device, determining a virtual physical property of a virtual message object based at least in part on the sensor signal, determining a haptic effect based at least in part on the virtual physical parameter; and generating a haptic signal configured to cause an actuator to output the haptic effect.
Abstract:
A device for delivering non-collocated haptic feedback includes at least one haptic playback device and a drive circuit for controlling the haptic playback device. A processor coupled to the drive circuit receives manipulation haptic information based on data received from a user interface. The processor generates a haptic signal is based on the manipulation haptic information. The haptic signal is provided to the drive circuit to produce the non-collocated haptic feedback.
Abstract:
The disclosure relates to systems and methods of providing haptic feedback based on media content and one or more external parameters used to customize the haptic feedback. The system may modify or otherwise alter haptic feedback that is determined using the media content alone. In other words, the system may use both the media content and the external parameters to determine haptic feedback that should be output to the user or others. The external parameters may include, for example, sensor information, customization information, and/or other external parameters that may be used to customize the haptic feedback.