Abstract:
A predoping method for a negative electrode active material of an energy storage device, comprising at least one predoping material that can provide an ion that is different from a primary ionic charge carrier for a charging and discharging process of the energy storage device, called non-primary predoping material. The predoping material may be first included in a predoping electrode and later discharged to the negative electrode active material. The predoping material may be first mixed with the negative electrode active material in an electrode fabrication process, and later made to directly contact the negative electrode active material by adding an electrolyte and removing the protective shells of the predoping material. An ion exchanging method is used to exchange a first ion coming from the predoping material for a second ion in an electrode stack.
Abstract:
The described embodiments provide an energy storage device that includes a positive electrode including a material that stores and releases ion, a negative electrode including Nb-doped TiO2(B), and a non-aqueous electrolyte containing lithium ions. The described embodiments provide a method including the steps of combining at least one titanium compound and at least one niobium compound in ethylene glycol to form a precursor solution, adding water into the precursor solution to induce hydrolysis and condensation reactions, thereby forming a reaction solution, heating the reaction solution to form crystallized particles, collecting the particles, drying the collected particles, and applying a thermal treatment at a temperature >350° C. to the dried particles to obtain Nb-doped TiO2(B) particles.
Abstract:
The described embodiments provide an energy storage device that includes a positive electrode including an active material that can store and release ions, a negative electrode including an active material that is a lithiated nano-architectured active material including tin and at least one stress-buffer component, and a non-aqueous electrolyte including lithium. The negative electrode active material is nano-architectured before lithiation.
Abstract:
Various embodiments of the present invention relate to electrode materials based on iron phosphates that can be used as the negative electrode materials for aqueous sodium ion batteries and electrochemical capacitors. At least one embodiment includes a negative electrode material for an aqueous sodium ion based energy storage device. The negative electrode material with a non-olivine crystal structure includes at least one phosphate selected from iron hydroxyl phosphate, Na3Fe3(PO4)4, Na3Fe(PO4)2, iron phosphate hydrate, ammonium iron phosphate hydrate, carbon-coated or carbon-mixed sodium iron phosphate. At least one embodiment includes an energy storage device that includes such a negative electrode material.