Abstract:
Disclosed herein is an improved fluidized catalytic cracking process for converting normally liquid hydrocarbon feedstock with simultaneous reduction of sulfur content in the liquid products obtained therefrom which comprises carrying out the cracking process in the presence of carbon monoxide gas as a reducing agent. The process optionally includes a step of premixing the hydrocarbon feedstock with carbon monoxide gas causing major sulfur reduction before effecting the cracking. The premixing is done in a specified nozzle assembly linked to the FCC unit.
Abstract:
Disclosed herein is an improved fluidized catalytic cracking process for converting normally liquid hydrocarbon feedstock with simultaneous reduction of sulfur content in the liquid products obtained therefrom which comprises carrying out the cracking process in the presence of carbon monoxide gas as a reducing agent. The process optionally includes a step of premixing the hydrocarbon feedstock with carbon monoxide gas causing major sulfur reduction before effecting the cracking. The premixing is done in a specified nozzle assembly linked to the FCC unit.
Abstract:
The invention discloses a process for upgrading feed streams containing residual fractions with high concentrations of metals, more specifically nickel content up to 150 ppm employing acidic catalysts comprising large pore rare earth faujasite zeolite component, pentasil zeolite component and pseudoboehemite containing resid cracking component while the composite is impregnated with lanthanum oxide or aluminium oxide or mixture of both. The hydrocarbon feed stock can be sourced from either petroleum derivatives or from coal, tar or sand. The process results in increased selectivity of propylene in LPG in the range of 39-52%.