Abstract:
In a light communication system, a data embedding unit arranged between a transmitter-side communication data processing unit and a light emitting device driver embeds a communication processed data at a spatial domain of an original image according to a modulation scheme, and gets multiple RGB values for a communication data embedded image. A receiving apparatus detects a transmitter-side communication data embedded image, generates a receiver-side communication data embedded image, compensate a deformation of the receiver-side communication data embedded image, outputs a warped communication data embedded image, and extracts a communication processed data from the warped communication data embedded image.
Abstract:
A method forms a preamble sequence in a wireless communication system. The method comprises determining a value K related to a time-domain characteristic of the wireless communication system so that a time-domain preamble sequence includes a number of K waveforms similar in shape to one another having a linear phase shift, identifying a first preamble sequence for a first band, the first preamble sequence having a first length not dividable by K, identifying at least one second preamble sequence each for a second band, the at least one second preamble sequence having at least one second length, identifying the length of a third preamble sequence, the length of the third preamble sequence equal to a sum of the first length and the at least one second length, determining whether the time-domain characteristic is maintained when the one or more of the at least one second preamble sequence is concatenated with the first preamble sequence, modifying one or more of the at least one second preamble sequence if the time-domain characteristic is not maintained when concatenated, and forming the third preamble sequence by concatenating the first preamble sequence and the at least one second preamble sequence having one or more second preamble sequence modified.
Abstract:
A light communication system, a transmitter and a receiver are provided. The light communication system includes the transmitter and the receiver. The transmitter has a first processing unit and a light-emitting element. The first processing unit produces a transmission signal. The light-emitting element produces light to carry the transmission signal. The receiver has a first variable lens, a photosensitive element and a second processing unit. The first variable lens changes the propagation path of the light. The photosensitive element senses the light passed through the first variable lens to produce a receiving signal. The second processing unit controls the first variable lens based on the signal quality of the receiving signal to change the equivalent channel between the transmission signal and the receiving signal. Therefore, the transmission capability of the light communication system is enhanced.
Abstract:
According to one exemplary embodiment, a light communication system comprises a transmitting apparatus and a receiving apparatus. The transmitting apparatus generates one or more patterns of light to decide at least one reference area, and transmits signals by emitting light in the at least one reference area decided by the one or more patterns. The receiving apparatus takes measurements fewer than a total amount of pixels over a sensed image to detect the one or more patterns of light, and decides at least one ROI according to one or more detected one or more patterns; then takes all signals of light in the at least one ROI for processing of the light communication, and takes measurements fewer than a total amount of pixels over at least one tracking area for tracking the one or more patterns of light emitted by the transmitting apparatus.
Abstract:
In a light communication system, a data embedding unit arranged between a transmitter-side communication data processing unit and a light emitting device driver embeds a communication processed data at a spatial domain of an original image according to a modulation scheme, and gets multiple RGB values for a communication data embedded image. A receiving apparatus detects a transmitter-side communication data embedded image, generates a receiver-side communication data embedded image, compensate a deformation of the receiver-side communication data embedded image, outputs a warped communication data embedded image, and extracts a communication processed data from the warped communication data embedded image.
Abstract:
A method forms a preamble sequence in a wireless communication system. The method comprises determining a value K related to a time-domain characteristic of the wireless communication system so that a time-domain preamble sequence includes a number of K waveforms similar in shape to one another having a linear phase shift, identifying a first preamble sequence for a first band, the first preamble sequence having a first length not dividable by K, identifying at least one second preamble sequence each for a second band, the at least one second preamble sequence having at least one second length, identifying the length of a third preamble sequence, the length of the third preamble sequence equal to a sum of the first length and the at least one second length, determining whether the time-domain characteristic is maintained when the one or more of the at least one second preamble sequence is concatenated with the first preamble sequence, modifying one or more of the at least one second preamble sequence if the time-domain characteristic is not maintained when concatenated, and forming the third preamble sequence by concatenating the first preamble sequence and the at least one second preamble sequence having one or more second preamble sequence modified.