Abstract:
A method for electrochemically selectively removing ions using a composite electrode is provided. The composite electrode includes a composite having a carbon support and an inorganic material immobilized on the carbon support.
Abstract:
The present disclosure provides a valuable metal selectively adsorbing electrode, including: an electrode formed by a carbon-containing material; and a protein of a bacterium of genus Tepidimonas immobilized on the electrode formed by a carbon-containing material to form the valuable metal selectively adsorbing electrode, wherein the valuable metal includes gold, palladium, silver or indium.
Abstract:
A method for electrochemically selectively removing ions using a composite electrode is provided. The composite electrode includes a composite having a carbon support and an inorganic material immobilized on the carbon support.
Abstract:
A binder for capacitive deionization electrode is provided, which is formed by reacting a polyether polyol, a diisocyanate, and a diol having a hydrophobic side chain. The binder may bind an electrode material and to form a capacitive deionization electrode. The electrode material and the binder may have a weight ratio of 90:5 to 90:25.
Abstract:
A forward osmosis process is provided, which includes separating a feed part and a draw solution part by a semi-permeable film. An ionic liquid is introduced into the draw solution part, and brine is introduced into the feed part. The brine has an osmotic pressure lower than that of the ionic liquid, so that pure water of the brine permeates through the semi-permeable film, enters the draw solution part, and mixes with the ionic liquid to form a draw solution. The draw solution was obtained out of the draw solution part to be left to stand at room temperature, so that the draw solution separated into a water layer and an ionic liquid layer. The ionic liquid includes