Abstract:
An inorganic material for removing a harmful substance from wastewater is provided. The inorganic material includes a plurality of porous silicate particles having a glass phase structure, wherein the plurality of porous silicate particles include silicon dioxide, aluminum oxide, barium oxide, cesium oxide, and boron oxide, and have a zeta potential of a negative value at pH of from 1 to 5, and wherein the average pore diameter of the porous silicate particles is in a range of from 3 to 50 nm. Moreover, a method for preparing an inorganic material for removing a harmful substance from wastewater and a method for wastewater treatment are further provided.
Abstract:
A method of manufacturing a porous fluorine-containing polymer membrane is provided, which includes mixing a fluorine-containing polymer, a pore creating agent, and a solvent to form a mixture; forming a membrane of the mixture, and removing the pore creating agent and the solvent in the membrane to form the porous fluorine-containing polymer film. The pore creating agent has a chemical formula of wherein R1 is a C1-8 alkyl group, a C2-8 alkenyl group, a C2-8 alkynyl group, or a C6-12 aromatic group, and A⊖ is hydrogen sulfite ion, dihydrogen phosphate ion, nitrate ion, halogen ion, or a combination thereof. The solvent has a chemical formula of
Abstract:
A binder for capacitive deionization electrode is provided, which is formed by reacting a polyether polyol, a diisocyanate, and a diol having a hydrophobic side chain. The binder may bind an electrode material and to form a capacitive deionization electrode. The electrode material and the binder may have a weight ratio of 90:5 to 90:25.
Abstract:
A forward osmosis process is provided, which includes separating a feed part and a draw solution part by a semi-permeable film. An ionic liquid is introduced into the draw solution part, and brine is introduced into the feed part. The brine has an osmotic pressure lower than that of the ionic liquid, so that pure water of the brine permeates through the semi-permeable film, enters the draw solution part, and mixes with the ionic liquid to form a draw solution. The draw solution was obtained out of the draw solution part to be left to stand at room temperature, so that the draw solution separated into a water layer and an ionic liquid layer. The ionic liquid includes
Abstract:
A composite is provided, the composite comprises a carbon support, and a layered double hydroxide (LDH) immobilized on the carbon support for selectively removing phosphorus. An electrode for electrochemical removal of phosphorus, and methods and apparatuses for electrochemical purification by utilizing the electrode are also provided.
Abstract:
An inorganic material for removing a harmful substance from wastewater is provided. The inorganic material includes a plurality of porous silicate particles having a glass phase structure, wherein the plurality of porous silicate particles include silicon dioxide, aluminum oxide, barium oxide, cesium oxide, and boron oxide, and have a zeta potential of a negative value at pH of from 1 to 5, and wherein the average pore diameter of the porous silicate particles is in a range of from 3 to 50 nm. Moreover, a method for preparing an inorganic material for removing a harmful substance from wastewater and a method for wastewater treatment are further provided.
Abstract:
A method for electrochemically selectively removing ions using a composite electrode is provided. The composite electrode includes a composite having a carbon support and an inorganic material immobilized on the carbon support.
Abstract:
An ionic liquid and a forward osmosis process employing the same are provided. The ionic liquid has a structure represented by Formula (I) ABn Formula (I), wherein A is n is 1 or 2; m is 0, or an integer from 1 to 7; R1 and R2 are independently methyl or ethyl; k is an integer from 3 to 8; B is i is independently 1, 2, or 3; and j is 5, 6, or 7. The forward osmosis process employing the ionic liquid is used to desalinate a brine via a forward osmosis (FO) model.
Abstract:
An electrodialysis module includes at least one base unit. The base unit includes a working tank, a first ion-exchange membrane, a second ion-exchange membrane, at least one first electrode, and at least two second electrodes. The first ion-exchange membrane and the second ion-exchange membrane are located in the working tank. The first ion-exchange membrane and the second ion-exchange membrane together divide the working tank into two electrode compartments and a desalination compartment therebetween. The at least one first electrode is disposed in the desalination compartment. The at least two second electrodes are disposed in each of the electrode compartments, respectively, in which the at least two second electrodes and the at least one first electrode have different polarities.
Abstract:
A method for cleaning membrane is provided. The method includes, providing a membrane, introducing a thermo-sensitive ionic liquid to contact the membrane and perform a cleaning procedure to collect a cleaning solution, and layering the cleaning solution to form an aqueous layer and an ionic liquid layer at a specific temperature.