Abstract:
A dehumidifying base material and a device for forming the dehumidifying base material are provided. The dehumidifying base material is formed from a raw base material including a metal layer, an upper adhesive film, a lower adhesive film, an upper absorbent material layer, a lower absorbent material layer, an upper release film, and a lower release film. The raw base material is placed on a material placement part and passes a first release roller, an upper absorbent adhesive part, a second release roller, and a lower absorbent adhesive part sequentially to form the dehumidifying base material. The dehumidifying base material with an absorbent material applied onto two sides thereof is compressed, and is rolled by a base material rolling part.
Abstract:
A dehumidifying unit, a layered temperature control dehumidifying element, a drying device and a temperature control method thereof are provided. The dehumidifying element has a plurality of dehumidifying units. The dehumidifying units are made of a direct heating desorption material and used for dehumidifying air by adsorption and capable of being regenerated by desorption. By performing temperature compensation through a preheater and performing a layered temperature control method on the dehumidifying element, the disclosure achieves a uniform temperature control on the air flow passage of the dehumidifying element so as to improve regeneration performance of the dehumidifying element and reduce energy consumption of the drying device.
Abstract:
A dehumidifying unit, a layered temperature control dehumidifying element and a drying device are provided. The dehumidifying element has a plurality of dehumidifying units. The dehumidifying units are made of a direct heating desorption material and used for dehumidifying air by adsorption and capable of being regenerated by desorption. By performing temperature compensation through a preheater and performing a layered temperature control method on the dehumidifying element, the disclosure achieves a uniform temperature control on the air flow passage of the dehumidifying element so as to improve regeneration performance of the dehumidifying element and reduce energy consumption of the drying device.
Abstract:
A dehumidifying unit, a layered temperature control dehumidifying element and a drying device are provided. The dehumidifying element has a plurality of dehumidifying units. The dehumidifying units are made of a direct heating desorption material and used for dehumidifying air by adsorption and capable of being regenerated by desorption. By performing temperature compensation through a preheater and performing a layered temperature control method on the dehumidifying element, the disclosure achieves a uniform temperature control on the air flow passage of the dehumidifying element so as to improve regeneration performance of the dehumidifying element and reduce energy consumption of the drying device.