Abstract:
A pixel structure substrate including a substrate, a first dielectric layer and a second dielectric layer is provided. A data line and a first electrode are disposed on the substrate. The first dielectric layer directly covers the data line. The second dielectric layer covers the first electrode and the first dielectric layer. A thickness of the second dielectric layer is smaller than a thickness of the first dielectric layer, and the following equation is satisfied u1*A1/d1
Abstract:
An electronic device, including a light emitting unit, a first viewing angle control unit, and a circuit control unit, is provided. The light emitting unit has a first side and a second side opposite to the first side. The first viewing angle control unit is disposed at the first side. The circuit control unit is disposed at the second side. The light emitting unit and the first viewing angle control unit are electrically connected to the circuit control unit. A portion of the first viewing angle control unit is bendable towards the second side.
Abstract:
This disclosure provides a LC panel and the UV curing method therein for the LC curing treatment. The LC panel includes: a first substrate with a plurality of protrusion electrodes formed thereon; a second substrate disposed on the first substrate; a LC layer interposed between the first and second substrates; and a deflecting structure disposed between the first and second substrates and configured for changing optical paths of UV light; wherein the UV light passes through the areas between the neighboring protrusion electrodes, and the deflecting structure is located in the optical paths of the UV light.
Abstract:
A display device comprising a first substrate, a second substrate, a blue phase liquid crystal layer and an optical element is provided. The first substrate has a display area and is opposite to the second substrate. The blue phase liquid crystal layer is disposed between the first and the second substrate and reflects a light selectively. The spectrum peak of the light is within an intersection interval corresponding to a cross point of x_bar, y_bar and z_bar stimulus value spectrums, and the intersection interval has a wavelength range from 480 nm to 520 nm. The optical element has at least one function for adjusting a phase of the light or absorbing the light.
Abstract:
A display comprises a first substrate, a second substrate opposite to the first substrate, an electrode structure, and a light-emitting combination (LEC) layer positioned between the first and second substrates, wherein the LEC layer comprises a light emitting material and a LC material, and a horizontal or vertical electric field is generated when a voltage is applied to that electrode structure. One of exemplified displays has an electrode structure comprising a first electrode and a second electrode oppositely disposed, and the LEC layer is positioned between the first and second electrodes, wherein a vertical electric field is generated when a voltage is applied. The device can further comprise an electron injection layer and a hole transport layer. Another exemplified display has an electrode structure arranged on one side of the first substrate, and a horizontal electric field is generated when a voltage is applied.
Abstract:
A display device having a plurality of pixel units and a manufacturing method of the same are provided. The display device includes a first substrate assembly, a second substrate assembly, a liquid crystal mixture, and a pillared polymer network. The first substrate assembly includes a first substrate and a first electrode layer disposed on the first substrate. The second substrate assembly includes a second substrate. The liquid crystal mixture is disposed between the first and second substrate assemblies. The pillared polymer network is disposed between the first and second substrate assemblies and has a first end and second end. The first end abuts against the first substrate assembly and is disposed correspondingly to the first electrode layer. The second end abuts against the second substrate assembly. Each of the pixel units includes the pillared polymer network.
Abstract:
A pixel structure including a substrate, a first dielectric layer and a second dielectric layer is provided. A signal line and a pixel electrode are disposed on the substrate. The first dielectric layer covers the signal line and has a first capacitance. The second dielectric layer is disposed on the substrate, and covers the pixel electrode. The second dielectric layer has a second capacitance larger than the first capacitance.
Abstract:
A display comprises a first substrate, a second substrate opposite to the first substrate, an electrode structure, and a light-emitting combination (LEC) layer positioned between the first and second substrates, wherein the LEC layer comprises a light emitting material and a LC material, and a horizontal or vertical electric field is generated when a voltage is applied to that electrode structure. One of exemplified displays has an electrode structure comprising a first electrode and a second electrode oppositely disposed, and the LEC layer is positioned between the first and second electrodes, wherein a vertical electric field is generated when a voltage is applied. The device can further comprise an electron injection layer and a hole transport layer. Another exemplified display has an electrode structure arranged on one side of the first substrate, and a horizontal electric field is generated when a voltage is applied.
Abstract:
A display device having a plurality of pixel units and a manufacturing method of the same are provided. The display device includes a first substrate assembly, a second substrate assembly, a liquid crystal mixture, and a pillared polymer network. The first substrate assembly includes a first substrate and a first electrode layer disposed on the first substrate. The second substrate assembly includes a second substrate. The liquid crystal mixture is disposed between the first and second substrate assemblies. The pillared polymer network is disposed between the first and second substrate assemblies and has a first end and second end. The first end abuts against the first substrate assembly and is disposed correspondingly to the first electrode layer. The second end abuts against the second substrate assembly. Each of the pixel units includes the pillared polymer network.
Abstract:
A display device including a first substrate, a second substrate, and a liquid crystal layer is provided. The liquid crystal layer is disposed between the first substrate and the second substrate. The liquid crystal layer includes a liquid crystal mixture and a nano carbon material. The nano carbon material is distributed in the liquid crystal mixture.