Abstract:
Methods, apparatus, systems, devices, and computer program products directed to enabling federation 200 of multiple independent networks 204A, 204B, 204C, 204D through hash-routing based peering (HRP) and/or summary-routing based peering (SRP) are provided. Pursuant to new methodologies and/or technologies provided herein the multiple independent networks self-organize, or otherwise assemble, as a federation of network peers. The network peers 204A, 204B, 204C, 204D cooperate to pool and/or merge resources to make available for the federation 200 a population of content objects. As members of the federation, each of the network peers undertakes responsibility for making available to other network peers a share of the population. The multiple independent networks establish connectivity and federate using an HRP protocol. Pursuant to the HRP protocol, the network peers allocate amongst themselves respective key ranges within a hash-value space of a hash function. The network peers employ an allocation strategy to guide allocation of the hash-value space. When one of the network peers 204C receives a content request 201 from a local end user 202, local router or another network, the network peer routes and/or forwards the content request over a backhaul or transit network 216C or any link not part of the peering network if the content request falls into the content-object population allocated to this peer. Alternatively, the network peer routes and/or forwards the content request 201 through another network peer for processing if a hash value calculated from the content request falls within a key range of a hash value space allocated to such network peer. Logically merging the multiple individual networks as a federation with the logically combined backhaul and/or caching resources of the network peers 204A, 204B, 204C, 204D, should result in an efficiency gain because of a higher cache-hit ratio, since the merged caching resources supports a larger population. Federating the multiple individual networks using the HRP protocol enables such logical merging of caching storage capacity and transit (or backhaul) transfer capacity of the multiple individual networks.
Abstract:
A method and a system are disclosed for providing session continuity in a 5G system. A wireless transmit receive unit (WTRU) may receive, from a session management function (SMF), a first Non-Access Stratum (NAS) message indicating a Packet Data Unit (PDU) session re-establishment. Upon receiving the first NAS message, the WTRU may determine an old PDU session ID based on the NAS message and generate a new PDU session ID. The WTRU may transmit a second NAS message indicating a PDU session establishment request. The second NAS message may include the old and new PDU session IDs. Upon receiving the PDU session establishment request, the SMF may determine that the old PDU session ID is associated with an existing PDU session for which the PDU session re-establishment is requested. The SMF may also determine that the new PDU session ID is associated with a new PDU session to be established.
Abstract:
A method and a system are disclosed for providing session continuity in a 5G system. A wireless transmit receive unit (WTRU) may receive, from a session management function (SMF), a first Non-Access Stratum (NAS) message indicating a Packet Data Unit (PDU) session re-establishment. Upon receiving the first NAS message, the WTRU may determine an old PDU session ID based on the NAS message and generate a new PDU session ID. The WTRU may transmit a second NAS message indicating a PDU session establishment request. The second NAS message may include the old and new PDU session IDs. Upon receiving the PDU session establishment request, the SMF may determine that the old PDU session ID is associated with an existing PDU session for which the PDU session re-establishment is requested. The SMF may also determine that the new PDU session ID is associated with a new PDU session to be established.
Abstract:
Systems, methods, and instrumentalities are disclosed for defining a network specialization mechanism that enables a better alignment between end users' usage profiles and their access networks. Conteni specialization of networks may be implemented as a preference o a particular SCN or network in terms of content. Such a network may, for example, cache in priority preferred content, provide preferential quality of service (QoS), or limit access to non-preferred content. A network may advertise its preference or content specialization to end users (e.g., so that end users can decide to attach to SCNs or networks with compatible preferences) and to other content networks (e.g., to influence content routing decisions or to negotiate partitioning of the specialization space). Such content specialization may apply to physical or virtual networks.
Abstract:
Systems, methods, and instrumentalities are disclosed to implement hierarchical policies for local networks. In one representative method, a first local node may establish a dedicated local IP access (LIPA) packet data network (PDN) connection for a local service provided via a local network. The method may include responsive to a request for access to the local service, the first local node receiving a quality of service (QoS) requirement for the requested local service; sending, to a second local node, a dedicated bearer request with a specified QoS level based on a global policy and network-information specific to the local network; and receiving a dedicated bearer response with the specified QoS level.