Abstract:
Systems and methods for error recovery include determining an error in at least one stage of a plurality of stages during a first cycle on a hardware circuit, each of the plurality of stages having a main latch and a shadow latch. A first signal is transmitted to an output stage of the at least one stage to stall the main latch and the shadow latch of the output stage during a second cycle. A second signal is transmitted to an input stage of the at least one stage to stall the main latch of the input stage during the second cycle and to stall the main latch and the shadow latch of the input stage during a third cycle. Data is restored from the shadow latch to the main latch for the at least one stage and the input stage to recover from the error.
Abstract:
Systems and methods for error recovery include determining an error in at least one stage of a plurality of stages during a first cycle on a hardware circuit, each of the plurality of stages having a main latch and a shadow latch. A first signal is transmitted to an output stage of the at least one stage to stall the main latch and the shadow latch of the output stage during a second cycle. A second signal is transmitted to an input stage of the at least one stage to stall the main latch of the input stage during the second cycle and to stall the main latch and the shadow latch of the input stage during a third cycle. Data is restored from the shadow latch to the main latch for the at least one stage and the input stage to recover from the error.
Abstract:
Systems and methods for error recovery include determining an error in at least one stage of a plurality of stages during a first cycle on a hardware circuit, each of the plurality of stages having a main latch and a shadow latch. A first signal is transmitted to an output stage of the at least one stage to stall the main latch and the shadow latch of the output stage during a second cycle. A second signal is transmitted to an input stage of the at least one stage to stall the main latch of the input stage during the second cycle and to stall the main latch and the shadow latch of the input stage during a third cycle. Data is restored from the shadow latch to the main latch for the at least one stage and the input stage to recover from the error.
Abstract:
Systems and methods for error recovery include determining an error in at least one stage of a plurality of stages during a first cycle on a hardware circuit, each of the plurality of stages having a main latch and a shadow latch. A first signal is transmitted to an output stage of the at least one stage to stall the main latch and the shadow latch of the output stage during a second cycle. A second signal is transmitted to an input stage of the at least one stage to stall the main latch of the input stage during the second cycle and to stall the main latch and the shadow latch of the input stage during a third cycle. Data is restored from the shadow latch to the main latch for the at least one stage and the input stage to recover from the error.
Abstract:
A system for estimating delay deterioration in an integrated circuit includes a degradation estimator for estimating degradation for each of one or more lifetimes in at least one characteristic of each device defined within the integrated circuit using voltages and logic values monitored during a simulation of the integrated circuit. A netlist generator generates an end-of-life netlist for each of the one or more lifetimes in which the at least one device characteristic of each device has been modified to reflect each of the estimated degradations. A timing analyzer performs a timing analysis on each of the end-of-life netlists to determine static or statistical circuit path delays over the one or more lifetimes.
Abstract:
Systems and methods for error recovery include determining an error in at least one stage of a plurality of stages during a first cycle on a hardware circuit, each of the plurality of stages having a main latch and a shadow latch. A first signal is transmitted to an output stage of the at least one stage to stall the main latch and the shadow latch of the output stage during a second cycle. A second signal is transmitted to an input stage of the at least one stage to stall the main latch of the input stage during the second cycle and to stall the main latch and the shadow latch of the input stage during a third cycle. Data is restored from the shadow latch to the main latch for the at least one stage and the input stage to recover from the error.
Abstract:
Systems and methods for error recovery include determining an error in at least one stage of a plurality of stages during a first cycle on a hardware circuit, each of the plurality of stages having a main latch and a shadow latch. A first signal is transmitted to an output stage of the at least one stage to stall the main latch and the shadow latch of the output stage during a second cycle. A second signal is transmitted to an input stage of the at least one stage to stall the main latch of the input stage during the second cycle and to stall the main latch and the shadow latch of the input stage during a third cycle. Data is restored from the shadow latch to the main latch for the at least one stage and the input stage to recover from the error.