Abstract:
A glucose sensor comprises a conducting back electrode. The glucose sensor also comprises a silicon substrate in electrical contact with the conducting back electrode. The glucose sensor also comprises a dielectric layer disposed on the silicon substrate. The glucose sensor also comprises a pH sensing layer disposed on the dielectric layer. The glucose sensor also comprises a chemical layer disposed on the pH sensing layer, wherein the chemical layer is in contact with an aqueous solution. The glucose sensor also comprises a conductive electrode disposed on the dielectric layer, where in the conductive electrode is in contact with the aqueous solution.
Abstract:
A glucose sensor comprises a conducting back electrode. The glucose sensor also comprises a silicon substrate in electrical contact with the conducting back electrode. The glucose sensor also comprises a dielectric layer disposed on the silicon substrate. The glucose sensor also comprises a pH sensing layer disposed on the dielectric layer. The glucose sensor also comprises a chemical layer disposed on the pH sensing layer, wherein the chemical layer is in contact with an aqueous solution. The glucose sensor also comprises a conductive electrode disposed on the dielectric layer, where in the conductive electrode is in contact with the aqueous solution.
Abstract:
A clock driver is provided. The clock driver includes a multi-stage delay cell having an input, a positive pulse driving branch, a negative pulse driving branch, and an output. The input is for receiving an original version of a reference clock signal input to the clock driver and used to generate a global clock signal. The output is connected to the positive pulse driving branch and the negative pulse driving branch. The clock driver further includes a pulse generator having positive and negative pulse generator portions respectively connected to outputs of the positive and negative pulse driving branches. The pulse generator generates, at any given time, one of a positive pulse and a negative pulse responsive to a positive pulse enable signal and a negative pulse enable signal, respectively, and the original version of the reference clock signal input to the clock driver without modification.
Abstract:
A clock driver and corresponding method are provided. The clock driver includes a multi-stage delay cell having logic circuitry and a plurality of serially connected delay elements. An input of the delay elements receives an original version of a reference clock signal input to the clock driver and used to generate a global clock signal. An output of the delay elements connects to positive and negative pulse driving branches formed from the logic circuitry. The clock driver further includes a pulse generator forming positive and negative pulse generator portions respectively connected to outputs of the positive and negative pulse driving branches. The pulse generator generates, at any given time, one of a positive pulse and a negative pulse responsive to a positive pulse enable signal and a negative pulse enable signal, respectively, and the original version of the reference clock signal input to the clock driver without modification.
Abstract:
A physical test integrated circuit has a plurality of repeating circuit portions corresponding to an integrated circuit design. A first of the portions is fabricated with a nominal block mask location, and additional ones of the portions are deliberately fabricated with predetermined progressive increased offset of the block mask location from the nominal block mask location. For each of the portions, the difference in threshold voltage between a first field effect transistor and a second field effect transistor is determined. The predetermined progressive increased offset of the block mask location is in a direction from the first field effect transistor to the second field effect transistor. The block mask overlay tolerance is determined at a value of the progressive increased offset corresponding to an inflection of the difference in threshold voltage from a zero difference. A method for on-chip monitoring, and corresponding circuits, are also disclosed.
Abstract:
A system for estimating delay deterioration in an integrated circuit includes a degradation estimator for estimating degradation for each of one or more lifetimes in at least one characteristic of each device defined within the integrated circuit using voltages and logic values monitored during a simulation of the integrated circuit. A netlist generator generates an end-of-life netlist for each of the one or more lifetimes in which the at least one device characteristic of each device has been modified to reflect each of the estimated degradations. A timing analyzer performs a timing analysis on each of the end-of-life netlists to determine static or statistical circuit path delays over the one or more lifetimes.