Abstract:
According to a bipolar transistor structure having a transistor top and a transistor bottom herein, a silicon substrate located at the transistor bottom has a collector region of a first conductivity type. An epitaxial base layer of a second conductivity type overlies, relative to the transistor top and bottom, a portion of the collector region. The epitaxial base layer has a bottom surface on the silicon substrate and a top surface opposite the bottom surface. A top region, relative to the transistor top and bottom, of the epitaxial base layer comprises a concentration of germanium having atomic compositions sufficient to avoid impacting transistor parameters, and sufficient to be resistant to selective chemical etching. A silicon emitter layer of the first conductivity type overlies, relative to the transistor top and bottom, a portion of the epitaxial base layer adjacent to the top surface of the epitaxial base layer.
Abstract:
According to a bipolar transistor structure having a transistor top and a transistor bottom herein, a silicon substrate located at the transistor bottom has a collector region of a first conductivity type. An epitaxial base layer of a second conductivity type overlies, relative to the transistor top and bottom, a portion of the collector region. The epitaxial base layer has a bottom surface on the silicon substrate and a top surface opposite the bottom surface. A top region, relative to the transistor top and bottom, of the epitaxial base layer comprises a concentration of germanium having atomic compositions sufficient to avoid impacting transistor parameters, and sufficient to be resistant to selective chemical etching. A silicon emitter layer of the first conductivity type overlies, relative to the transistor top and bottom, a portion of the epitaxial base layer adjacent to the top surface of the epitaxial base layer.
Abstract:
Structures and methods of making a dielectric region in a bulk silicon (Si) substrate of a mixed-signal integrated circuit (IC) provide a high-Q passive resonator. Deep trenches within the bulk Si substrate in directions are expanded by wet etching to form contiguous cavities, which are filled by Si oxide to form a dielectric region. The dielectric region enhances the quality (Q) of an overlying passive resonator, formed in metallization layers of the mixed-signal IC.
Abstract:
According to a bipolar transistor structure having a transistor top and a transistor bottom herein, a silicon substrate located at the transistor bottom has a collector region of a first conductivity type. An epitaxial base layer of a second conductivity type overlies, relative to the transistor top and bottom, a portion of the collector region. The epitaxial base layer has a bottom surface on the silicon substrate and a top surface opposite the bottom surface. A top region, relative to the transistor top and bottom, of the epitaxial base layer comprises a concentration of germanium having atomic compositions sufficient to avoid impacting transistor parameters, and sufficient to be resistant to selective chemical etching. A silicon emitter layer of the first conductivity type overlies, relative to the transistor top and bottom, a portion of the epitaxial base layer adjacent to the top surface of the epitaxial base layer.
Abstract:
A method of forming an integrated circuit structure includes: forming a vent via extending through a shallow trench isolation (STI) and into a substrate; selectively removing an exposed portion of the substrate at a bottom of the vent via to form an opening within the substrate, wherein the opening within the substrate abuts at least one of a bottom surface or a sidewall of the STI; and sealing the vent via to form an air gap in the opening within the substrate.
Abstract:
Various embodiments include field effect transistors (FETs) and methods of forming such FETs. One method includes: forming a first set of openings in a precursor structure having: a silicon substrate having a crystal direction, the silicon substrate substantially abutted by a first oxide; a silicon germanium (SiGe) layer overlying the silicon substrate; a silicon layer overlying the SiGe layer; a second oxide overlying the silicon layer; and a sacrificial layer overlying the second oxide, wherein the first set of openings each expose the silicon substrate; undercut etching the silicon substrate in a direction perpendicular to the crystal direction of the silicon substrate to form a trench corresponding with each of the first set of openings; passivating exposed surfaces of at least one of the SiGe layer or the silicon layer in the first set of openings; and at least partially filling each trench with a dielectric.
Abstract:
Structures and methods of making a dielectric region in a bulk silicon (Si) substrate of a mixed-signal integrated circuit (IC) provide a high-Q passive resonator. Deep trenches within the bulk Si substrate in directions are expanded by wet etching to form contiguous cavities, which are filled by Si oxide to form a dielectric region. The dielectric region enhances the quality (Q) of an overlying passive resonator, formed in metallization layers of the mixed-signal IC.
Abstract:
According to a bipolar transistor structure having a transistor top and a transistor bottom herein, a silicon substrate located at the transistor bottom has a collector region of a first conductivity type. An epitaxial base layer of a second conductivity type overlies, relative to the transistor top and bottom, a portion of the collector region. The epitaxial base layer has a bottom surface on the silicon substrate and a top surface opposite the bottom surface. A top region, relative to the transistor top and bottom, of the epitaxial base layer comprises a concentration of germanium having atomic compositions sufficient to avoid impacting transistor parameters, and sufficient to be resistant to selective chemical etching. A silicon emitter layer of the first conductivity type overlies, relative to the transistor top and bottom, a portion of the epitaxial base layer adjacent to the top surface of the epitaxial base layer.
Abstract:
Various embodiments include field effect transistors (FETs) and related integrated circuit (IC) layouts. One FET includes: a silicon substrate including a set of trenches; a first oxide abutting the silicon substrate; a silicon germanium (SiGe) layer overlying the silicon substrate; a silicon layer overlying the SiGe layer; a second oxide overlying the silicon layer, wherein the silicon layer includes a plurality of salicide regions; a gate structure overlying the second oxide between adjacent salicide regions; and a first contact contacting the gate structure; a second contact contacting one of the salicide regions; a third oxide partially filling the set of trenches and extending above the silicon layer overlying the SiGe layer; and an air gap in each of the set of trenches, the air gap surrounded by the third oxide.
Abstract:
A method of forming an integrated circuit structure includes: forming a vent via extending through a shallow trench isolation (STI) and into a substrate; selectively removing an exposed portion of the substrate at a bottom of the vent via to form an opening within the substrate, wherein the opening within the substrate abuts at least one of a bottom surface or a sidewall of the STI; and sealing the vent via to form an air gap in the opening within the substrate.