Abstract:
A system of rapid prototyping, comprises a calculate controller, a stage, a deliver, a frame former, a filler and a forming machine. A board material was disposed on the stage by the deliver. The frame former heats up the board material to melt the board material and then forms at least a space on the board material. The filler fills a solidable liquid into the space. The deliver disposes another board material on the board material filled with solidable liquid and repeats the abovementioned steps until the plurality of spaces constitute the target article. And then the forming machine heats up the board materials to melt the board materials, meanwhile, the solidable liquid is solidified to form the target article. Wherein the calculate controller connects and operates the deliver, the frame former, the filler and the forming machine.
Abstract:
A solid object manufacturing system comprises: a controlling device, a solid object manufacturing device and a projecting device. The control device generates a solid object model and then divides the model into a plurality of layer images. The control device then adjusts the height of a lifting table of the solid object manufacturing device and controls the projecting device to project one of the layer images on the lifting table synchronously, so as to guide user to form an article by using a printing module of the solid object manufacturing device. The solid object manufacturing system guides user to complete the article by projecting the layer images and adjusting the height of the lifting table.
Abstract:
Monitoring a 3D printer comprises a network information module, a photographic device, a status report module, and a fixed format instruction receiver module. The photographic device is capable of periodically shooting a print status of the 3D printer. The status report module is capable of periodically reporting the print status or instantly reporting a print error of the 3D printer. The fixed format instruction receiver module is capable of receiving a remote fixed format instruction to operate the 3D printer. Thus, the system may not require an operator to monitor the 3D printer for long. Even on the remote end, the system can monitor a print status of a printed object and may execute a corresponding treatment when a print error of the 3D printer has occurred.
Abstract:
The invention discloses a method for encrypting a 3D model file and system thereof. The system of the invention comprises a data reading module used to read data of the 3D model file; a mesh shifting module for selecting at least one triangle mesh and shifting the coordinates of the vertexes of the selected triangle mesh by a vector; a gap filling module for filling a gap generated from shifting the vertexes of the selected triangle mesh by the vector to generate a revised 3D model file; and a model generating module for storing the revised 3D model file to generate an encrypted 3D model file. Compared to the prior art, the invention provides the users for previewing the 3D model file, and the invention only provides the authorized users for correctly printing the original 3D model. Therefore, the invention can achieve the purpose for encrypting the 3D model file.
Abstract:
The invention discloses a method for encrypting a 3D model file and system thereof. The system of the invention comprises a data reading module used to read data of the 3D model file; a mesh shifting module for selecting at least one triangle mesh and shifting the coordinates of the vertexes of the selected triangle mesh by a vector; a gap filling module for filling a gap generated from shifting the vertexes of the selected triangle mesh by the vector to generate a revised 3D model file; and a model generating module for storing the revised 3D model file to generate an encrypted 3D model file. Compared to the prior art, the invention provides the users for previewing the 3D model file, and the invention only provides the authorized users for correctly printing the original 3D model. Therefore, the invention can achieve the purpose for encrypting the 3D model file.
Abstract:
Monitoring a 3D printer comprises a network information module, a photographic device, a status report module, and a fixed format instruction receiver module. The photographic device is capable of periodically shooting a print status of the 3D printer. The status report module is capable of periodically reporting the print status or instantly reporting a print error of the 3D printer. The fixed format instruction receiver module is capable of receiving a remote fixed format instruction to operate the 3D printer. Thus, the system may not require an operator to monitor the 3D printer for long. Even on the remote end, the system can monitor a print status of a printed object and may execute a corresponding treatment when a print error of the 3D printer has occurred.