Abstract:
A catalyst system suitable for the polymerization of olefins comprising an olefin polymerization catalyst and an activator comprising the reaction product of (i) an aluminoxane or (ii) the reaction product of an alkylaluminum and water with a silicon-containing compound, for example diphenylsilane diol. Preferred catalysts are metallocene complexes. The activators provide an alternative to the traditional use of aluminoxanes alone.
Abstract:
A process for the production of an olefin comprising partially combusting in a reaction zone a mixture of a hydrocarbon and an oxygen-containing gas in the presence of a catalyst which is capable of supporting combustion beyond the fuel rich limit of flammability to produce the olefin, wherein the superficial feed velocity of said mixture is at least 250 cm s?-1? at standard temperature and operating pressure with the proviso that where the catalyst is an unsupported catalyst, the superficial feed velocity of said mixture is at least 300 cm s−1 at standard temperature and operating pressure.
Abstract:
The present invention provides a process for the production of olefins which process comprises co-feeding at least one unsaturated hydrocarbon with a paraffinic hydrocarbon-containing feedstock and a molecular oxygen-containing gas to an autothermal cracker, wherein they are reacted in the presence of a catalyst capable of supporting combustion beyond the normal fuel rich limit of flammability to provide a hydrocarbon product stream comprising olefins.
Abstract:
The present invention provides a process for the production of olefins, which process comprises: (a) providing an autothermal cracking unit having at least two reactors, (b) autothermally cracking a first hydrocarbon stream by contacting said stream with a first catalyst bed in the presence of molecular oxygen containing gas in one or more first reactors to produce one or more first product streams, (c) autothermally cracking a second hydrocarbon stream by contacting said stream with a second catalyst bed in the presence of molecular oxygen containing gas in one or more second reactors to produce one or more second product streams, (d) separating at least one olefin-containing product stream from the first and second product streams, characterised in that at least two of the following apply: (i) the first and second catalyst beds are different, (ii) the first and second hydrocarbon streams are different, and (iii) the second hydrocarbon stream is not cracked to optimize production of C2 to C4 olefins.
Abstract:
Process for the removal of oxygen from a gas mixture comprising oxygen, at least one olefin, hydrogen, carbon monoxide and optionally at least one alkyne, the ratio of oxygen:hydrogen in the gas mixture being 1 part by volume of oxygen to at least 5 parts by volume of hydrogen. The process comprises contacting the gas mixture with a catalyst in a reaction zone under conditions sufficient to oxidise at least a portion of the hydrogen and to oxidize at least a portion of the carbon monoxide and without significant hydrogenation of the at least one olefin. The catalyst comprises at least one metal or oxide of a metal from the 10th group of the Periodic Table of Elements, the metal or oxide of the metal being supported on an oxide support, provided that the catalyst also comprises tin.
Abstract:
A process for the production of olefins from a hydrocarbon comprising the steps of: a) passing a first feed stream comprising gaseous reactants to a first reaction zone wherein said gaseous reactants react exothermically to provide a product stream b) producing a mixed feed stream comprising oxygen by passing the product stream produced in step (a) and a second feed stream comprising a hydrocarbon feedstock to a mixing zone, oxygen being passed to the mixing zone via (i) the product stream produced in step (a), (ii) the second feed stream comprising a hydrocarbon feedstock and/or (iii) a third stream comprising an oxygen-containing gas c) passing the mixed feed stream directly to an essentially adiabatic second reaction zone wherein in the absence of a supported platinum group metal catalyst at least a part of the oxygen is consumed and a stream comprising olefins is produced e) cooling the stream comprising olefins exiting the second reaction zone to less than 650° C. within less than 150 milliseconds of formation and wherein the temperature of the mixed stream is at least 500° C., the mixing zone and the second reaction zone are maintained at a pressure of between 1.5-50 bar and the residence time within the mixing zone is less than the autoignition delay for the mixed stream.
Abstract translation:一种从烃生产烯烃的方法,包括以下步骤:a)将包含气态反应物的第一进料流送至第一反应区,其中所述气态反应物放热反应以提供产物流b)产生包含氧的混合进料流 通过将步骤(a)中产生的产物流和包含烃原料的第二进料流传送到混合区,将氧气通过(i)步骤(a)中产生的产物流传递到混合区,(ii) 包含烃原料的第二进料流和/或(iii)包含含氧气体的第三料流c)将混合进料流直接传递到基本绝热的第二反应区,其中在不存在负载的铂族金属催化剂的情况下至少 氧气的一部分被消耗,并且产生包含烯烃的料流e)将包含离开第二反应区的烯烃的料流冷却至小于650℃ n 150毫秒的形成,其中混合流的温度为至少500℃,混合区和第二反应区保持在1.5-50巴之间的压力下,混合区内的停留时间较少 比混合流的自熄延迟。
Abstract:
Catalyst compositions comprising metallocene complexes having polymerisable may be used for the preparation of polyolefins. The catalyst compositions may be in the form of polymers comprising the metallocene complex and may be suitably supported on inorganic supports. Polymers having a broad range of density and melt indices as well as low hexane extractables and excellent powder morphology and flowability may be obtained by use of the catalyst compositions. Preferred metallocene complexes are zirconium complexes in which the polymerisable group is vinyl.
Abstract:
Catalyst compositions comprising metallocene complexes having polymerisable olefinic groups substituent on an organic group containing a cyclopentadienyl nucleus may be used for the preparation of polyolefins. The catalyst compositions may be in the form of polymers comprising the metallocene complex and may be suitably supported on inorganic supports. Polymers having a broad range of density and melt indices as well as low hexane extractables and excellent powder morphology and flowability may be obtained by use of the catalyst compositions. Preferred metallocene complexes are zirconium complexes in which the polymerisable olefinic group is vinyl.
Abstract:
Process for the production of an olefin comprising partially combusting in a reaction zone a mixture of a hydrocarbon and an oxygen-containing gas in the presence of a catalyst which is capable of supporting combustion beyond the fuel rich limit of flammability to produce the olefin. The superficial feed velocity of the mixture is at least 250 cm s−1 at standard temperature and operating pressure, with the proviso that where the catalyst is an unsupported catalyst, the superficial feed velocity of the mixture is at least 300 cm s−1 at standard temperature and operating pressure. The process is carried out at a pressure of at least 1.3 bara and the reaction zone is not externally heated.
Abstract:
Transition metal complexes suitable for use for the polymerization of olefins having Lewis Base functionality. Preferred groups are dienes having dialkylamino functionality. The complexes may suitably be supported by the use of the functionalized dienes to give transition metal complexes which in the presence of activators are particularly suitable for gas phase processes.