摘要:
Providing a microscope capable of movably adjusting an observation field of a sample without moving the sample. The microscope includes a first objective lens, a second objective lens, a mirror, an angular adjustment mechanism, and a shift mechanism. The first objective lens is disposed to the sample side. The second objective lens forms an intermediate image of the sample together with the first objective lens. The mirror is disposed with a tilt on an optical path between the first objective lens and the second objective lens. The angular adjustment mechanism rotatably adjust the mirror in the tilt direction. The shift mechanism makes a shift adjustment of the second objective lens in an axial direction of a rotation axis of the mirror. With the configuration, the observation field can be moved two-dimensionally by the angular adjustment mechanism.
摘要:
Providing a microscope capable of movably adjusting an observation field of a sample without moving the sample. The microscope includes a first objective lens, a second objective lens, a mirror, an angular adjustment mechanism, and a shift mechanism. The first objective lens is disposed to the sample side. The second objective lens forms an intermediate image of the sample together with the first objective lens. The mirror is disposed with a tilt on an optical path between the first objective lens and the second objective lens. The angular adjustment mechanism rotatably adjust the mirror in the tilt direction. The shift mechanism makes a shift adjustment of the second objective lens in an axial direction of a rotation axis of the mirror. With the configuration, the observation field can be moved two-dimensionally by the angular adjustment mechanism.
摘要:
Providing a microscope capable of movably adjusting an observation field of a sample without moving the sample. The microscope includes a first objective lens, a second objective lens, a mirror, an angular adjustment mechanism, and a shift mechanism. The first objective lens is disposed to the sample side. The second objective lens forms an intermediate image of the sample together with the first objective lens. The mirror is disposed with a tilt on an optical path between the first objective lens and the second objective lens. The angular adjustment mechanism rotatably adjust the mirror in the tilt direction. The shift mechanism makes a shift adjustment of the second objective lens in an axial direction of a rotation axis of the mirror. With the configuration, the observation field can be moved two-dimensionally by the angular adjustment mechanism.
摘要:
A focus detection apparatus is provided with a light source 16 that emanates light with a given wavelength range; a reflection member 15 that reflects light emanated from the light source 16 to lead to an object 6a, reflects light from the light source 16 reflected from the object 6a, and transmits light from the object 6a with at least two different wavelength ranges except the light reflected from the object 6a; a photodetector 21 detecting the light from the light source 16 reflected from the object 6a; and a controller 22 detecting a focus shift between the objective lens 8 and the object 6a in the microscope 2 based on a signal detected by the photodetector 21, thereby providing a focus detection apparatus capable of limiting wavelength range of light for focus detection thereby able to use wider wavelength range for the microscope observation, and a microscope equipped therewith.
摘要:
The purpose is to move an observation field of view of a microscope without moving or changing an objective lens without varying position or state of a sample. A microscope optical system according to the present invention has a mirror that changes the direction of the optical path by reflection and locates in the optical path between an objective lens of the microscope and an image to be observed. The mirror is able to be tilted with changing the position of a reflecting surface of the mirror. Accordingly, the observation field of view is moved by tilting the mirror. In other words, the observation field of view can be moved without changing positional relation between the objective lens of the microscope and the sample.
摘要:
A memory circuit, provided with address signal generating arrangement that includes first counter 72 for outputting first output data Q1 sequentially designating address signals for memory cells under test in a memory 10, a second counter 74 for outputting second output data Q2 used to designate address signals for each memory cell of the memory 10 for every cell under test, an output control circuit 76 for selectively outputting the second output data Q2 as third output data Q3 depending on a control signal INH, and a computing circuit 78 for carrying out computations based on the first output data Q1 and the third output data Q3, and generating address signals Q4. In this way, a memory receives address signals based on a test pattern, and a tester exclusively for memory tests is not required.
摘要:
An error correction system for a difference set cyclic (272,190) code with 190 data bits and 82 test bits in a coded transmission teletext system which transmits character information on the vertical blanking interval of a television signal has been improved in peripheral circuits for operating an error correction circuit. A first improvement is to correct only designated packets which are in frame synchronization condition and/or designated by an index register. A second improvement is to handle shortened (L,k) code where L is less than 272, using common hardware. A third improvement is selection of three operational modes of data to be corrected. In the first mode, uncorrected data is supplied by an external circuit, and said uncorrected data is stored temporarily in a buffer memory, and corrected data is stored in said buffer memory again to supply external circuit corrected data. Transfer of data between the buffer memory and the error correction circuit is handled by wired logic hardware apparatus. In a second mode, uncorrected data and corrected data are provided in a buffer memory but no external circuit is concerned in operation of the present system. In a third mode, no buffer memory is used, and an external circuit supplies uncorrected data to an error correction circuit directly and receives corrected data directly from the error correction circuit.
摘要:
A laboratory dish comprises an incubation container, containing cultured cells, for observation through a microscope, in which a partitioning member partitions an interior of the incubation container into a plurality of incubation chambers by substantially perpendicular walls. The partitioning member tightly fits to a bottom portion of the incubation container, thereby capable of retaining in separation a liquid inputted in each of the incubation chambers from liquids in the other incubation chambers. A cover member covers an upper portion of each of the incubation chambers partitioned by the partitioning member and tightly fitted to the partitioning member. A whole or part of the cover member is formed of a transparent member, and the upper portion of each incubation chamber is formed with an opening via which to input the liquid.
摘要:
An observation field of view of a microscope can be moved without moving or changing an objective lens and without varying position or state of a sample. A microscope optical system has a mirror that changes the direction of the optical path by reflection and is located in the optical path between an objective lens of the microscope and an image to be observed. The mirror is able to be tilted by changing the position of a reflecting surface of the mirror. Accordingly, the observation field of view is moved by tilting the mirror. In other words, the observation field of view can be moved without changing a positional relationship between the objective lens of the microscope and the sample.
摘要:
An observation field of view of a microscope can be moved without moving or changing an objective lens and without varying position or state of a sample. A microscope optical system has a mirror that changes the direction of the optical path by reflection. The mirror is located in the optical path between an objective lens of the microscope and an image to be observed. The mirror can be tilted to change the position of a reflecting surface of the mirror. Accordingly, the observation field of view is moved by tilting the mirror without changing a positional relation between the objective lens of the microscope and the sample.