摘要:
In a resin coating applicator, a holder 14 is fixed on a base 15 fitted to a drawing machine, and in the holder 14, hot water can be circulated from an inlet 18. The inner circumferential surface of the holder 14 is formed into a tapered shape so that the outer circumferential surface of a cup-like member 4 of a cartridge type coating sub-assembly 1 is fitted to the holder 14. The respective outer circumferential surfaces of a nipple 2 and a coating die 3 are cylindrical so as to be fitted to the inner circumferential surfaces of an inner cylindrical member 6, and they are positioned by a step portion. Further, they are pressed from the upper and lower sides by the bottom portion of the cup-like member 4 and a lid member 5. The lid member 5 is fastened to the cup-like member 4 integrally by a thread.
摘要:
In an optical fiber coating method comprising the steps of; applying an injecting first coating resin to the outer periphery of the optical fiber while inserting the optical fiber through a first die hole provided in a first coating die; and applying an injected second coating resin onto the first coating resin while inserting the optical fiber through a second die hole provided in a second coating die. Wherein a disk-shaped upper end face of the second coating die and a basically disk-shaped lower end face of the first coating die having a protrusion formed around the first die hole and projecting in the passing direction of the optical fiber are opposed to each other so as to arrange the first and second die holes concentrically, and the second coating resin is injected into the second die hole by way of a gap formed between the lower end face of the first coating die and the upper end face of the second coating die, so as to reduce an annular lower-pressure region formed around the optical fiber in a flow of the second coating resin within the gap.
摘要:
The present invention relates to an optical fiber coating method and an apparatus therefor which can form high quality coating layer on an optical fiber (12) by preventing non-concentricity of a coating resin (14) applied on the optical fiber (12) and admixing of bubble. The optical fiber coating apparatus according to the present invention includes at least one pair of an illumination light introducing window (39) and an optical fiber monitoring window (40) formed facing each other with the resin pool between in a side wall portion of a die holder (17), opposing a resin pool (27), a light source (41) opposing to the illumination light introducing window (39) and projecting an illumination light toward the center portion of the resin pool (27), an image pick-up device (42) opposing the optical fiber monitoring window (40) for monitoring at least a contact portion between the optical fiber (12) and the coating resin (14) and in the vicinity thereof, and coating condition modifying means for modifying a coating condition of the coating resin (14) with respect to the optical fiber (12) on the basis of the result of observation of the image pick-up device (42).
摘要:
A collectively coating die device (2) is provided for applying coating resin in a lump to coated optical fibers (1) arranged in parallel on one and the same plane so as to form a plurality of optical fiber ribbons (16) at the same time. The collectively coating die device (2) has a nipple portion (9) and a die portion (10), a resin accumulation space (8) formed between the nipple portion (9) and the die portion (10). The nipple portion (9) has two parallel planes and having a plurality of optical fiber passageways (13) shaped like ellipses in section and provided in the direction perpendicular to the planes. The die portion (10) has two parallel planes and has a plurality of optical fiber passageways (14) shaped like ellipses in section and is provided in the direction perpendicular to the planes. Each of the optical fiber passageways (13) of the nipple portion (9) has a tapered portion. Each of the optical fiber passageways (14) of the die portion (10) is constituted by a tapered portion and a straight portion in order from an inlet opening side. The optical fiber passageways (14) of the die portion (10) is disposed so as to correspond to the optical fiber passageways (13) of the nipple portion (9) respectively through the resin accumulation space (8).
摘要:
In a method of making a ribbon type coated optical fiber 3 comprising the step of inserting a plurality of optical fibers 1 flatly arranged parallel to each other through a die orifice 11a so as to collectively coat the optical fibers with a coating resin 2, the ratio W/H of a clearance W in the width direction between the inner surface of the die orifice 11a and the outer surface of the optical fibers 1 to a clearance H in the thickness direction therebetween is set within the range of 1.0 to 2.5.
摘要:
An object of the present invention is to provide a buffered optical fiber, which excels in environmental characteristics and mechanical characteristics and has high flame retardancy and excels in optical transmission characteristics, and to provide a buffered optical fiber, which is terminated with a connector and uses this buffered optical fiber. The buffered optical fiber of the invention is provided with a second coating layer on an outer peripheral surface of an optical fiber produced by providing a first coating layer on an outer peripheral surface of a glass fiber. A second resin composition constituting the second coating layer comprises 100 to 250 weight parts of metal hydroxide and 10 to 100 weight parts of a nitrogen-based flame retardant material per 100 weight parts of the base polymer. Further, the second resin composition does not contain halogenated materials.
摘要:
An object of the present invention is to provide a buffered optical fiber, which excels in environmental characteristics and mechanical characteristics and has high flame retardancy and excels in optical transmission characteristics, and to provide a buffered optical fiber, which is terminated with a connector and uses this buffered optical fiber. The buffered optical fiber of the invention is provided with a second coating layer on an outer peripheral surface of an optical fiber produced by providing a first coating layer on an outer peripheral surface of a glass fiber. A second resin composition constituting the second coating layer comprises 100 to 250 weight parts of metal hydroxide and 10 to 100 weight parts of a nitrogen-based flame retardant material per 100 weight parts of the base polymer. Further, the second resin composition does not contain halogenated materials.
摘要:
In an optical fiber ribbon 1 according to the present invention, four optical fibers 10, 20, 30 and 40 are arranged in parallel to each other in a plane, a part of the periphery of these four optical fibers is covered with a ribbon matrix 51, but no rest thereof is covered with the ribbon matrix. First areas covered with the ribbon matrix 51 and second areas uncovered with the ribbon matrix alternate with each other along the longitudinal direction thereof. Alternatively, the optical fiber ribbon 1 is covered with the ribbon matrix over its entire length. In the glass section of each optical fibers, the mode field diameter defined by the definition of Petermann-I at a wavelength of 1.55 μm is 8 μm or less, and the cable cutoff wavelength is 1.26 μm or less.
摘要:
The present invention provides an optical fiber and the like comprising a structure making it possible to realize optical communications with a higher speed and a larger capacity as compared with conventional optical transmission systems. The optical fiber according to the present invention is an optical fiber in which at least one first portion having a positive chromatic dispersion at a predetermined wavelength within a wavelength band in use and at least one second portion having a negative chromatic dispersion at the predetermined wavelength are arranged adjacent each other along the longitudinal direction thereof. In particular, the optical fiber comprises a polarization coupling structure for inducing coupling between polarization modes of propagating light. This polarization coupling structure randomly causes coupling between polarization modes of the propagating light, whereby polarization mode dispersion decreases at the predetermined wavelength. As a consequence, transmission characteristics are effectively restrained from deteriorating due to polarization mode dispersion. Specifically, the polarization coupling structure is a twist applied to the optical fiber.
摘要:
A multiple fiber optical cable includes bundled plural optical fibers. In each of the optical fibers to be bundled in the optical cable, a positive dispersion section having a positive chromatic dispersion in an optical signal wavelength and a negative dispersion section having a negative chromatic wavelength and a negative dispersion section having a negative chromatic dispersion section in the optical signal wavelength are alternately arranged so that the chromatic dispersion characteristic of the optical fiber alternately changes in the longitudinal direction. The chromatic dispersion characteristics of the respective bundled plural optical fibers coincide with each other at at least the position of each end of the multiple fiber optical cable. The member which surrounds the optical fibers of the optical cable is provided with the identification marks for identifying the chromatic dispersion characteristics at the individual locations in the longitudinal direction.