Abstract:
A plasma device having low thermal noise, which results in a high signal-to-noise ratio (SNR) of the plasma device. The plasma device includes devices with a plasma that is responsive to electromagnetic radiation and/or electrical signals. In various configurations, the plasma device has a plasma in which the temperature, resistance, pressure, and/or collision frequency are at a level sufficiently low to produce an acceptable level of noise. In another configuration, the operating frequency of the plasma device is at a level sufficiently high to produce an acceptable level of noise. Decreasing the noise level results in increasing the signal-to-noise ratio and increasing the data rate. The plasma temperature is reduced by operating the plasma device in the afterglow state. The plasma electron temperature is reduced by confining high energy electrons in a potential well and by using an electron emitting filament.
Abstract:
The present invention is drawn to an antenna having a reconfigurable length, and a method of reconfiguring an antenna. The antenna can comprise an enclosed composition capable of forming plasma operable as an antenna; an energy source configured for applying variable energy levels to the composition to thereby form variable plasma configurations; and an enclosure containing the composition. The enclosure can have a proximal end, wherein upon application of a first energy level to the composition, a first plasma length with respect to the proximal end is formed, and upon application of a second energy level to the composition, a second plasma length with respect to the proximal end is formed.
Abstract:
The surface of a web or film is modified to impart the material with improved properties including wettability, printability, adhesion and static reduction. Such surface modification is achieved with an electrode structure which causes a filamentary discharge to pass generally horizontally across a surface of the electrode structure. A substrate to be treated is then positioned adjacent to the surface of the electrode structure so that the filamentary discharge is caused to flow horizontally across the surface of the substrate, in turn modifying the surface of the substrate and achieving the desired improvement in properties.
Abstract:
A method and apparatus for generating microwave radiation includes a cathode, comprising parallel side wall means, a first end wall and a second end wall parallel to the first end wall, which defines a space. An aperture is defined within each of the end walls. An elongated anode extends across the defined space and outwardly through the apertures. Free electrons are generated adjacent to the anode and a positive potential is applied between the cathode and the anode. Electrons are trapped in a surrounding relation with the anode and microwave radiation is generated. In an alternate embodiment, a pair of spaced-apart radial steps in the radius of the anode is used to replace the first and second end walls to form electrostatic mirrors for confining free electrons therebetween.
Abstract:
A scanner has plasma loop or plasma window antennas for selectively scanning for ID tags along distinct radials of the scanner. Scanner elements are made electromagnetically invisible to adjacent elements by removing power or lowering plasma densities so that the scanner elements do not interfere with its own operation. Activatable ID tags and a shipping container suitable for scanning with electromagnetic energy are also disclosed.
Abstract:
An expandible antenna device comprising an expandible shell defining an interior chamber, wherein the shell is radially expandible from a central axis within the chamber; an elongated support structure disposed along the central axis and at least partially within the chamber; and an antenna element coupled to the shell such that the antenna is dimensionally stable when the shell is in an expanded position is disclosed. Additionally, an antenna element comprised of conductive elements joined by fluid filled bulbs or tubes wherein the fluid is capable of ionization is also disclosed.
Abstract:
The present invention is drawn toward a plasma antenna that is preferably reconfigurable, methods of generating plasma antennas, and a method of reconfiguring the radiation pattern of a plasma antenna. The plasma antenna is comprised of a) an enclosed chamber; b) a composition contained within the enclosed chamber capable of forming a plasma; c) at least three energizing points capable of forming electromagnetic contact with the composition; and d) an energy source coupled to the at three energizing points for developing at least one conductive path of plasma within the enclosed chamber. Preferably, a modifying mechanism may be utilized to reconfigure the conductive path.
Abstract:
An apparatus for producing a plasma with a direct current. A nonmetallic first electrode, having a first surface and a second surface, has pores formed between the first and second surfaces. A conductive liquid is dispersed within the pores of the nonmetallic first electrode. The conductive liquid provides direct current pathways through the nonmetallic first electrode. A second electrode also has a first surface and a second surface. A direct current source provides a first direct current electrical potential and second direct current electrical potential. A first conductive connector is electrically connected to the direct current source, and is disposed adjacent the first surface of the nonmetallic first electrode. The first conductive connector receives the first direct current electrical potential from the direct current source and provides the first direct current electrical potential to the nonmetallic first electrode. A second conductive connector is electrically connected to the direct current source, and is disposed adjacent the first surface of the second electrode. The second conductive connector receives the second direct current electrical potential from the direct current source and provides the second direct current electrical potential to the second electrode. A plasma generation region is defined between the second surface of the nonmetallic first electrode and the second surface of the second electrode. The plasma generation region receives a gas that forms the plasma when the first electrical potential is applied to the second surface of the nonmetallic first electrode and the second electrical potential is applied to the second electrode. The first electrical potential is conducted by the conductive liquid through the pores of the nonmetallic first electrode to the second surface of the nonmetallic first electrode.
Abstract:
A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.
Abstract:
A method and apparatus for generating microwave radiation includes a cathode, comprising parallel side wall means, a first end wall and a second end wall parallel to the first end wall, which defines a space. An aperture is defined within each of the end walls. An elongated anode extends across the defined space and outwardly through the apertures. Free electrons are generated adjacent to the anode and a positive potential is applied between the cathode and the anode. Electrons are trapped in a surrounding relation with the anode and microwave radiation is generated.