摘要:
This invention relates to the culture of dendritic cells from human embryonic stem (ES) cells. Human ES cells are first cultured into hematopoietic cells by co-culture with stromal cells. The cells now differentiated into the hematopoietic lineage are then cultured with GM-CSF to create a culture of myeloid precursor cells. Culture of the myeloid precursor cells with the cytokines GM-CSF and IL-4 causes functional dendritic cells to be generated. The dendritic cells have a unique phenotype, as indicated by their combination of cell surface markers.
摘要:
This invention relates to the culture of dendritic cells from human embryonic stem (ES) cells. Human ES cells are first cultured into hematopoietic cells by co-culture with stromal cells. The cells now differentiated into the hematopoietic lineage are then cultured with GM-CSF to create a culture of myeloid precursor cells. Culture of the myeloid precursor cells with the cytokines GM-CSF and IL-4 causes functional dendritic cells to be generated. The dendritic cells have a unique phenotype, as indicated by their combination of cell surface markers.
摘要:
This invention relates to the culture of dendritic cells from human embryonic stem (ES) cells. Human ES cells are first cultured into hematopoietic cells by co-culture with stromal cells. The cells now differentiated into the hematopoietic lineage are then cultured with GM-CSF to create a culture of myeloid precursor cells. Culture of the myeloid precursor cells with the cytokines GM-CSF and IL-4 causes functional dendritic cells to be generated. The dendritic cells have a unique phenotype, as indicated by their combination of cell surface markers.
摘要:
This invention relates to the culture of dendritic cells from human embryonic stem (ES) cells. Human ES cells are first cultured into hematopoietic cells by co-culture with stromal cells. The cells now differentiated into the hematopoietic lineage are then cultured with GM-CSF to create a culture of myeloid precursor cells. Culture of the myeloid precursor cells with the cytokines GM-CSF and IL-4 causes functional dendritic cells to be generated. The dendritic cells have a unique phenotype, as indicated by their combination of cell surface markers.
摘要:
Methods and compositions of erythroid cells that produce adult β-hemoglobin, generated by culturing CD31+, CD31+/CD34+ or CD34+ cells from embryonic stem cells under serum-free culture conditions.
摘要:
Methods and compositions of erythroid cells that produce adult β-hemoglobin, generated by culturing CD31+, CD31+/CD34+ or CD34+ cells from embryonic stem cells under serum-free culture conditions.
摘要:
This invention relates to the culture of dendritic cells from human embryonic stem (ES) cells. Human ES cells are first cultured into hematopoietic cells by co-culture with stromal cells. The cells now differentiated into the hematopoietic lineage are then cultured with GM-CSF to create a culture of myeloid precursor cells. Culture of the myeloid precursor cells with the cytokines GM-CSF and IL-4 causes functional dendritic cells to be generated. The dendritic cells have a unique phenotype, as indicated by their combination of cell surface markers.
摘要:
This invention relates to hematopoietic precursors derived from human embryonic stem cells. In the culture of differentiated cells from human ES cells, the fully committed hematopoietic precursors are CD34+ and CD43+ but not CD45+. If the cells are cultured until they express CD45, then the cells lose the ability to produce differentiated cells of the lymphoid lineages.
摘要:
Methods for obtaining multipotent mesenchymal stem cells under serum-free conditions and methods for identifying multipotent mesenchymal progenitor cells are disclosed.
摘要:
This invention relates to hematopoietic precursors derived from human embryonic stem cells. In the culture of differentiated cells from human ES cells, the fully committed hematopoietic precursors are CD34+ and CD43+ but not CD45+. If the cells are cultured until they express CD45, then the cells lose the ability to produce differentiated cells of the lymphoid lineages.