METHOD FOR MAKING HOLLOW SILICA PARTICLES

    公开(公告)号:US20250033983A1

    公开(公告)日:2025-01-30

    申请号:US18917846

    申请日:2024-10-16

    Abstract: A method for forming hollow silica spheres by dissolving a hydrolyzable aryl silane in an aqueous solution of water and an acid to form a hydrolyzed silane solution, mixing the hydrolyzed silane solution with a hydroxide base to form a precipitate, and calcining the precipitate in a multi-stage calcination procedure that includes (a) heating to a first temperature of 180 to 240° C. with a first ramp rate of 3 to 10° C./min and holding the first temperature for 2 minutes to 2 hours, then (b) heating to a second temperature of 600 to 740° C. at a second ramp rate of 0.1 to 4° C./min, and holding the second temperature for 2 to 24 hours.

    ZNO-POROUS GRAPHITE COMPOSITES, THEIR USE AND MANUFACTURE

    公开(公告)号:US20200346940A1

    公开(公告)日:2020-11-05

    申请号:US16400358

    申请日:2019-05-01

    Abstract: High surface area 3D mesoporous carbon nanocomposites can be derived from Zn dust and PET bottle mixed waste with a high surface area. Simultaneous transformation of Zn metal into ZnO nanoparticles and PET bottle waste to porous carbon materials can be achieved by thermal treatment at preferably 600 to 800° C., and reaction times of from 15 to 60 minutes, after optionally de-aerating the reaction mixtures with N2 gas. The waste-based carbon materials can have surface areas of 650 to 725 m2/g, e.g., 684.5 m2/g and pore size distributions of 12 to 18 nm. The carbon materials may have 3D porous dense layers with a gradient pore structure, which may have enhanced photocatalytic performance for degrading, e.g., organic dyes, such as methylene blue and malachite green. Sustainable methods make ZnO-mesoporous carbon materials from waste for applications including photocatalysis, upcycling mixed waste materials.

Patent Agency Ranking