摘要:
A dispersion liquid contains fine particles of core-shell type inorganic oxide that have high dispersion stability and transparency and allow for excellent light resistance and weather resistance by being mixed in a coating film. The fine particles are produced by treating the surfaces of (a) fine particles of titanium-containing metal oxide serving as core particles with a hydrate and/or an oxide of a metal element such as zirconium to provide surface-treated particles or fine particles of titanium-containing metal oxide having (b) an intermediate layer and by covering the surfaces of the surface-treated particles to form (c) a shell layer with a composite oxide of silicon and at least one metal element selected from aluminum, zirconium, and antimony.
摘要:
Described are ZnxCd1-xSySe1-y/ZnSzSe1-z core/shell nanocrystals, CdTe/CdS/ZnS core/shell/shell nanocrystals, optionally doped Zn(S,Se,Te) nano- and quantum wires, and SnS quantum sheets or ribbons, methods for making the same, and their use in biomedical and photonic applications, such as sensors for analytes in cells and preparation of field effect transistors.
摘要:
The present invention relates to a positive electrode active material for a lithium secondary battery, a method for preparing the same and a lithium secondary battery including the same, the positive electrode active material includes a core including a first lithium complex metal oxide, and a shell located surrounding the core and including a second lithium complex metal oxide, and further includes a buffer layer located between the core and the shell, wherein the buffer layer includes a pore, and a three-dimensional network structure of a third lithium complex metal oxide which is connecting the core and the shell, and accordingly, minimizing destruction of the active material caused by a rolling process during the electrode preparation, and maximizing reactivity with an electrolyte liquid.
摘要:
Disclosed herein is a nanocrystal comprising a core comprising a first nanocrystal material, the first nanocrystal material including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; a shell being disposed upon a surface of the core and comprising a second nanocrystal material, the second nanocrystal material being different from the first nanocrystal material and including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; and an alloy interlayer disposed between the core and the shell, wherein the emission peak wavelength of the nanocrystal is shifted into a shorter wavelength than the emission peak wavelength of the core.
摘要:
A positive active material for a rechargeable lithium battery includes a core including an overlithiated oxide represented by Chemical Formula 1, a first coating layer on the core and including a compound having a spinel structure, and a second coating layer on the first coating layer and including a compound represented by Chemical Formula 2. The compound having a spinel structure shows a peak between about 2.6 V and about 2.7 V in a graph of differential capacity dQ/dV vs. voltage, where the voltage is between about 4.7 V and about 2.5 V. xLi2MnO3.(1−x)LiNiaCobMncO2 Chemical Formula 1 LidTieO2 Chemical Formula 2 In the above Chemical Formulae 1 and 2, x, a, b, c, d and e are as defined in the specification.
摘要:
In a multilayer body according to the present invention, two or more materials having different dielectric constants are stacked, at least one of the two or more materials having different dielectric constants is composed of particles having a core-shell structure, and the multilayer body is free of glass. In this multilayer body, for example, a first material having a first dielectric constant of 1000 or more and a second material having a second dielectric constant that is lower than the first dielectric constant may be stacked. The first material may be a BaTiO3 material, and the second material may be one or more selected from the group consisting of BaO—TiO—ZnO materials, BaO—TiO2—Bi2O3—Nd2O3 materials, and BaO—Al2O3—SiO2—ZnO materials. The multilayer body may be manufactured by using an aerosol deposition method for spraying a substrate with a raw powder in an atmosphere having a pressure lower than atmospheric pressure.
摘要:
Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability.When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.5, and after nucleation is performed, an aqueous solution for particle growth, which includes the nuclei that were formed in the nucleation step and does not substantially include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.
摘要:
A process for forming an opacifying pigment encapsulated in polymer including (a) dispersing a pigment particle having an average particle diameter of from 150 to 500 nm and an index of refraction of at least 1.8 such as, for example, TiO2 in a medium with from 0.1% to 10% by weight, based on the weight of said pigment particle, sulfur acid-functional first polymer whereby the zeta potential of the dispersed pigment particle is less than −28 mV between pH 5 and pH 8; and (b) performing an emulsion polymerization in the presence of the dispersed pigment particle to provide from 10% to 200%, by weight, based on the weight of the pigment particle, second polymer that at least partially encapsulates the dispersed pigment particle. Also provided are the encapsulated pigment particle so formed and compositions including the encapsulated pigment particle.
摘要:
The present invention is directed to a method of forming titania clad high surface area alumina suitable as a support for forming noble metal catalysts. The resultant catalysts exhibit resistance to poisoning by sulfurous materials and, therefore, are useful in applications directed to internal combustion engine emission conversion and the like. The present invention provides a commercially feasible and cost effective method of forming a highly desired support for noble metal catalyst application. The process comprises forming a slurry of porous alumina particulate suitable as a catalyst support for the intended application, mixing said slurry with a solution of titanyl sulfate having a pH of about 1, increasing the pH of the mixed slurry/solution at a slow rate of from 0.05 to 0.5 pH unit per minute to a pH of ≦4 by the addition of a basic solution, allowing the resultant slurry to age for a period of from 10 to 120 minutes, separating the treated porous alumina particulates and washing same free of sulfate with a weak base, drying and calcining said particulates to produce titania clad alumina particulate product. The resultant material exhibits a normalized sulfur uptake of less than about 45 μg/m2-sample. Such material can subsequently be coated with a noble metal to form the catalyst material.
摘要:
Disclosed is a positive active material for a rechargeable lithium battery. The positive active material includes a core and a surface-treatment layer on the core. The core includes at least one lithiated compound and the surface-treatment layer includes at least one coating material selected from the group consisting of coating element included-hydroxides, oxyhydroxides, oxycarbonates, hydroxycarbonates and any mixture thereof.