Abstract:
An aluminum alloy wheel for a vehicle is provided, which includes: a wheel central portion, a rim portion, and a plurality of radial elements, wherein the aluminum alloy wheel is processed by centrifugal casting and forging to form a central portion with a morphology exhibiting a grain size variation with decreasing gradient in a lateral direction from an inner side of the wheel central portion to an outer side thereof.
Abstract:
A multi-element alloy material consists of Al, Cr, Fe, Mn, Mo and Ni. From an outer surface to a center of the multi-element alloy material exhibits a hardness gradient from high to low. A method of manufacturing a multi-element alloy material with hardness gradient includes melting and casting metals with a metal combination of Al, Cr, Fe, Mn, Mo and Ni to form an alloy body, subjecting the alloy body to a homogenization treatment, and subjecting the homogenized alloy body to a high temperature treatment to perform precipitation hardening at surface of the alloy body by heating, thereby forming a multi-element alloy material having hardness gradient.
Abstract:
A multi-element alloy material consists of Al, Cr, Fe, Mn, Mo and Ni. From an outer surface to a center of the multi-element alloy material exhibits a hardness gradient from high to low. A method of manufacturing a multi-element alloy material with hardness gradient includes melting and casting metals with a metal combination of Al, Cr, Fe, Mn, Mo and Ni to form an alloy body, subjecting the alloy body to a homogenization treatment, and subjecting the homogenized alloy body to a high temperature treatment to perform precipitation hardening at surface of the alloy body by heating, thereby forming a multi-element alloy material having hardness gradient.
Abstract:
A composite powder is provided. The composite powder comprises 80-97 wt % of carbide and 3-20 wt % of blending metal powder comprising cobalt and a first metal powder, wherein the first metal powder is formed of one of aluminum, titanium, iron, nickel, or a combination thereof, and the amount of cobalt is 90-99% of total blending metal powder.
Abstract:
An aluminum alloy wheel for a vehicle is provided, which includes: a wheel central portion, a rim portion, and a plurality of radial elements, wherein the aluminum alloy wheel is processed by centrifugal casting and forging to form a central portion with a morphology exhibiting a grain size variation with decreasing gradient in a lateral direction from an inner side of the wheel central portion to an outer side thereof.
Abstract:
A method of manufacturing an iron-based alloy coating is provided, which includes (a) providing an iron-based alloy powder having a chemical formula of FeaCrbMocSidBeYf, wherein 48≤a≤50; 21≤b≤23; 18≤c≤20; 2≤d≤3; 2≤e≤4; and 0
Abstract:
A metal matrix composite material includes 60-90 wt. % of aluminum alloy powders and 10-40 wt. % Fe-based amorphous alloy powders. The aluminum alloy powders are used as the matrix of the metal matrix composite material, and the Fe-based amorphous alloy powders include FeaCrbMocSidBeYf, wherein 48 at. %≤a≤50 at. %, 21 at. %≤b≤23 at. %, 18 at. %≤c≤20 at. %, 3 at. %≤D≤5 at. %, 2 at. %≤c≤4 at. %, and 2 at. %≤f≤4 at. %.