SYSTEMS, METHODS, AND APPARATUSES FOR IMPLEMENTING MAXIMUM LIKELIHOOD IMAGE BINARIZATION IN A CODED LIGHT RANGE CAMERA

    公开(公告)号:US20170131090A1

    公开(公告)日:2017-05-11

    申请号:US14934599

    申请日:2015-11-06

    Abstract: In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing maximum likelihood image binarization in a coded light range camera. For instance, a depth camera is described having therein a projector to project a collection of planes, each at a different angle of projection, onto a scene via a plurality of coded pattern images, each of the coded pattern images having encoded therein via a plurality of stripes, the angle of projection for the plane of projection within which the respective coded pattern image is projected; a detector to capture the plurality of coded pattern images from the scene; a processing component to output a bit value for each pixel in the captured plurality of coded pattern images based on the pixel captured and based further on a patch of neighboring pixels surrounding the pixel; a decoder to decode each of the plurality of coded pattern images based on the bit values output by the processing component to determine the angle of projection for the corresponding plane of projection; and a triangulator to determine a position of an object in the scene based on an intersection of the determined angle of projection for the corresponding plane of projection with a geometric ray originating from the detector that detected the plurality of the coded pattern images. Other related embodiments are disclosed.

    Systems, methods, and apparatuses for implementing maximum likelihood image binarization in a coded light range camera

    公开(公告)号:US09952036B2

    公开(公告)日:2018-04-24

    申请号:US14934599

    申请日:2015-11-06

    Abstract: In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing maximum likelihood image binarization in a coded light range camera. For instance, a depth camera is described having therein a projector to project a collection of planes, each at a different angle of projection, onto a scene via a plurality of coded pattern images, each of the coded pattern images having encoded therein via a plurality of stripes, the angle of projection for the plane of projection within which the respective coded pattern image is projected; a detector to capture the plurality of coded pattern images from the scene; a processing component to output a bit value for each pixel in the captured plurality of coded pattern images based on the pixel captured and based further on a patch of neighboring pixels surrounding the pixel; a decoder to decode each of the plurality of coded pattern images based on the bit values output by the processing component to determine the angle of projection for the corresponding plane of projection; and a triangulator to determine a position of an object in the scene based on an intersection of the determined angle of projection for the corresponding plane of projection with a geometric ray originating from the detector that detected the plurality of the coded pattern images. Other related embodiments are disclosed.

    Techniques for spatio-temporal compressed time of flight imaging

    公开(公告)号:US10145942B2

    公开(公告)日:2018-12-04

    申请号:US14671238

    申请日:2015-03-27

    Abstract: Various embodiments are generally directed to an apparatus, method, system, and/or other techniques to determine estimated ambient electromagnetic (EM) radiation information based at least partially on ambient recovery sensor measurement information, determine estimated albedo information based at least partially on albedo recovery sensor measurement information, albedo recovery emitter modulation information, sensing matrix information, and the estimated ambient EM radiation information, and determine estimated range information based at least partially on range recovery sensor measurement information, the estimated albedo information, range recovery emitter modulation information, and sensing matrix information.

    SYSTEMS, METHODS, AND APPARATUSES FOR IMPLEMENTING MAXIMUM LIKELIHOOD IMAGE BINARIZATION IN A CODED LIGHT RANGE CAMERA

    公开(公告)号:US20170131089A1

    公开(公告)日:2017-05-11

    申请号:US14934586

    申请日:2015-11-06

    CPC classification number: H04N5/33 H04N5/2226 H04N5/2256 H04N13/246 H04N13/257

    Abstract: In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing maximum likelihood image binarization in a coded light range camera. For instance, a depth camera is described having therein a projector to project a collection of planes, each at a different angle of projection, onto a scene via a plurality of coded pattern images, each of the coded pattern images having encoded therein via a plurality of stripes, the angle of projection for the plane of projection within which the respective coded pattern image is projected; a detector to capture the plurality of coded pattern images from the scene; a processing component to adjust for ambient illumination and reflection properties of the scene; in which the processing component to further output a bit value for each pixel in the captured plurality of coded pattern images and to output a sub-pixel offset for the pixels positioned upon transitions of the plurality of stripes in the captured plurality of coded pattern images; a decoder to decode each of the plurality of coded pattern images and to adjust the decoded plurality of coded image patterns based on the sub-pixel offsets to determine the angle of projection for the corresponding plane of projection; and a triangulator to determine a position of an object in the scene based on an intersection of the determined angle of projection for the corresponding plane of projection with a known ray emanating from the detector that detected the plurality of the coded pattern images from the scene. Other related embodiments are disclosed.

Patent Agency Ranking