Abstract:
Techniques for encoding data are described herein. The method includes receiving a block payload at a physical layer to be transmitted via a data bus. The method includes establishing a block header comprising an arrangement of bits, the block header defining two block header types, wherein a hamming distance between block header types is at least four.
Abstract:
Clock distribution in an integrated circuit component can comprise the generation of bulk acoustic waves by acoustic transmitters and propagation of the bulk acoustic waves across the substrate where they are received by piezoelectric elements acting as acoustic receivers. Clock distribution can also comprise the generation of surface acoustic waves by acoustic transmitters located on the same substrate surface as the piezoelectric elements. An acoustic transmitter comprises a layer of piezoelectric material that generates an acoustic wave in response to the piezoelectric layer being activated by a clock source signal applied to the acoustic transmitter. The piezoelectric elements convert the acoustic waves into an electrical signal which can be used as a local clock signal for devices and components in the vicinity of the piezoelectric elements or from which such a local clock signal can be derived.
Abstract:
A scheme for noise floor de-embedding by identifying a link or relationship between noise floor from an oscilloscope and phase jitter impact on a toggling signal. The scheme uses phase or electrical spectrum and phase detection for noise floor recognition. The scheme de-embeds the impact from random noise and also removes deterministic noise or jitter from the oscilloscope. The scheme provides accurate jitter analysis for a circuit (e.g., clock data recovery circuit) after de-embedding noise floor for the oscilloscope.
Abstract:
Techniques for encoding data are described herein. The method includes receiving a block payload at a physical layer to be transmitted via a data bus. The method includes establishing a block header comprising an arrangement of bits, the block header defining two block header types, wherein a hamming distance between block header types is at least four.
Abstract:
Techniques for encoding data are described herein. The method includes receiving a block payload at a physical layer to be transmitted via a data bus. The method includes establishing a block header comprising an arrangement of bits, the block header defining two block header types, wherein a hamming distance between block header types is at least four.
Abstract:
A method and apparatus for dynamically adjusting power of a transmitter is herein described. A transmitter transmits a pattern to a receiver at a differential voltage. The length of the pattern, in one embodiment, is selected to be a reasonable length training pattern, as not to incur an extremely long training phase. If errors are detected at the receiver in the pattern, the transmitter steps the differential voltage until errors are not detected in the pattern at the receiver. The differential voltage, where no errors are detected, is scaled by a proportion of a target confidence level to a measured confidence level associated with the reasonable length training pattern. As a result, a training phase is potentially reduced and power is saved while not sacrificing confidence levels in error rates in the data exchange between the transmitter and receiver.
Abstract:
A scheme for noise floor de-embedding by identifying a link or relationship between noise floor from an oscilloscope and phase jitter impact on a toggling signal. The scheme uses phase or electrical spectrum and phase detection for noise floor recognition. The scheme de-embeds the impact from random noise and also removes deterministic noise or jitter from the oscilloscope. The scheme provides accurate jitter analysis for a circuit (e.g., clock data recovery circuit) after de-embedding noise floor for the oscilloscope
Abstract:
Techniques for encoding data are described herein. The method includes receiving a block payload at a physical layer to be transmitted via a data bus. The method includes establishing a block header comprising an arrangement of bits, the block header defining two block header types, wherein a hamming distance between block header types is at least four.
Abstract:
Techniques for encoding data are described herein. The method includes receiving a block payload at a physical layer to be transmitted via a data bus. The method includes establishing a block header comprising an arrangement of bits, the block header defining two block header types, wherein a hamming distance between block header types is at least four.
Abstract:
In some embodiments, a chip comprises control circuitry to provide inband signals, inband output ports, and transmitters to transmit the inband signals to the inband output ports. The control circuitry selectively includes loopback initiating commands in the inband signals. Other embodiments are described and claimed.