-
1.
公开(公告)号:US20200074691A1
公开(公告)日:2020-03-05
申请号:US16674512
申请日:2019-11-05
Applicant: INTEL CORPORATION
Inventor: Masayoshi Asama , Furkan Isikdogan , Sushma Rao , Avi Kalderon , Chyuan-Tyng Wu , Bhavin Nayak , Joao Peralta Moreira , Pavel Kounitsky , Ben Berlin , Gilad Michael
Abstract: An example apparatus for processing images includes a hybrid infinite impulse response—finite impulse response (IIR-FIR) convolution block to receive an image and generate processed image information. The hybrid IIR-FIR convolution block includes a vertical infinite impulse response (IIR) component to approximate a vertical convolution when processing the image.
-
公开(公告)号:US11868892B2
公开(公告)日:2024-01-09
申请号:US17887359
申请日:2022-08-12
Applicant: INTEL CORPORATION
Inventor: Furkan Isikdogan , Bhavin V. Nayak , Joao Peralta Moreira , Chyuan-Tyng Wu , Gilad Michael
IPC: G06N3/08 , G06V10/70 , G06V10/764 , G06N3/063 , G06F18/214 , G06N3/048 , G06V10/774 , G06V10/776 , G06V10/82
CPC classification number: G06N3/08 , G06F18/214 , G06N3/048 , G06N3/063 , G06V10/70 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82
Abstract: An apparatus to facilitate partially-frozen neural networks for efficient computer vision systems is disclosed. The apparatus includes a frozen core to store fixed weights of a machine learning model, one or more trainable cores coupled to the frozen core, the one or more trainable cores comprising multipliers for trainable weights of the machine learning model, and wherein the alpha blending layer includes a trainable alpha blending parameter, and wherein the trainable alpha blending parameter is a function of a trainable parameter, a sigmoid function, and outputs of frozen and trainable blocks in a preceding layer of the machine learning model.
-
公开(公告)号:US11302035B2
公开(公告)日:2022-04-12
申请号:US16674512
申请日:2019-11-05
Applicant: INTEL CORPORATION
Inventor: Masayoshi Asama , Furkan Isikdogan , Sushma Rao , Avi Kalderon , Chyuan-Tyng Wu , Bhavin Nayak , Joao Peralta Moreira , Pavel Kounitsky , Ben Berlin , Gilad Michael
Abstract: An example apparatus for processing images includes a hybrid infinite impulse response-finite impulse response (IIR-FIR) convolution block to receive an image and generate processed image information. The hybrid IIR-FIR convolution block includes a vertical infinite impulse response (IIR) component to approximate a vertical convolution when processing the image.
-
4.
公开(公告)号:US20200226429A1
公开(公告)日:2020-07-16
申请号:US16833263
申请日:2020-03-27
Applicant: Intel Corporation
Inventor: Avi Kalderon , Gilad Michael , Joao Peralta Moreira , Bhavin Nayak , Furkan Isikdogan
Abstract: An apparatus, method, and a computer readable medium for attenuating visual artifacts in processed images. An annotated dataset of images to be processed by an image processing system is created. An adversarial control network is trained to operate as an image quality expert in classifying images. After the adversarial control network has been trained, the adversarial control network is used to supervise the image processing system on-the-fly.
-
公开(公告)号:US20230410266A1
公开(公告)日:2023-12-21
申请号:US18200998
申请日:2023-05-23
Applicant: Intel Corporation
Inventor: Furkan Isikdogan , Timo Gerasimow , Gilad Michael
IPC: G06T5/00 , G06T3/00 , G06T5/20 , G06T7/73 , G06V40/18 , G06F18/214 , G06F18/21 , G06V10/764 , G06V10/82 , G06V10/44 , G06V10/98
CPC classification number: G06T5/006 , G06T3/0093 , G06T5/20 , G06T7/73 , G06V40/193 , G06F18/214 , G06F18/217 , G06V10/764 , G06V10/82 , G06V10/454 , G06V10/98 , G06T2210/44 , G06T2207/30041
Abstract: An example apparatus for adjusting eye gaze in images one or more processors to execute instructions to bidirectionally train a neural network; access a target angle and an input image, the input image including an eye in a first position; generate a vector field with the neural network; and generate a gaze-adjusted image based on the vector field, the gaze-adjusted image including the eye in a second position.
-
公开(公告)号:US20220391680A1
公开(公告)日:2022-12-08
申请号:US17887359
申请日:2022-08-12
Applicant: INTEL CORPORATION
Inventor: Furkan Isikdogan , Bhavin V. Nayak , Joao Peralta Moreira , Chyuan-Tyng Wu , Gilad Michael
Abstract: An apparatus to facilitate partially-frozen neural networks for efficient computer vision systems is disclosed. The apparatus includes a frozen core to store fixed weights of a machine learning model, one or more trainable cores coupled to the frozen core, the one or more trainable cores comprising multipliers for trainable weights of the machine learning model, and wherein the alpha blending layer includes a trainable alpha blending parameter, and wherein the trainable alpha blending parameter is a function of a trainable parameter, a sigmoid function, and outputs of frozen and trainable blocks in a preceding layer of the machine learning model.
-
公开(公告)号:US20200293870A1
公开(公告)日:2020-09-17
申请号:US16886103
申请日:2020-05-28
Applicant: Intel Corporation
Inventor: Furkan Isikdogan , Bhavin V. Nayak , Joao Peralta Moreira , Chyuan-Tyng Wu , Gilad Michael
Abstract: An apparatus to facilitate partially-frozen neural networks for efficient computer vision systems is disclosed. The apparatus includes a frozen core to store fixed weights of a machine learning model, one or more trainable cores coupled to the frozen core, the one or more trainable cores comprising multipliers for trainable weights of the machine learning model, and wherein the alpha blending layer includes a trainable alpha blending parameter, and wherein the trainable alpha blending parameter is a function of a trainable parameter, a sigmoid function, and outputs of frozen and trainable blocks in a preceding layer of the machine learning model.
-
公开(公告)号:US11880763B2
公开(公告)日:2024-01-23
申请号:US16886103
申请日:2020-05-28
Applicant: Intel Corporation
Inventor: Furkan Isikdogan , Bhavin V. Nayak , Joao Peralta Moreira , Chyuan-Tyng Wu , Gilad Michael
IPC: G06N3/08 , G06V10/70 , G06V10/764 , G06N3/063 , G06F18/214 , G06N3/048 , G06V10/774 , G06V10/776 , G06V10/82
CPC classification number: G06N3/08 , G06F18/214 , G06N3/048 , G06N3/063 , G06V10/70 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82
Abstract: An apparatus to facilitate partially-frozen neural networks for efficient computer vision systems is disclosed. The apparatus includes a frozen core to store fixed weights of a machine learning model, one or more trainable cores coupled to the frozen core, the one or more trainable cores comprising multipliers for trainable weights of the machine learning model, and wherein the alpha blending layer includes a trainable alpha blending parameter, and wherein the trainable alpha blending parameter is a function of a trainable parameter, a sigmoid function, and outputs of frozen and trainable blocks in a preceding layer of the machine learning model.
-
公开(公告)号:US11699217B2
公开(公告)日:2023-07-11
申请号:US17242849
申请日:2021-04-28
Applicant: Intel Corporation
Inventor: Furkan Isikdogan , Timo Gerasimow , Gilad Michael
IPC: G06T5/00 , G06V40/18 , G06T3/00 , G06T5/20 , G06T7/73 , G06F18/214 , G06F18/21 , G06V10/764 , G06V10/82 , G06V10/44 , G06V10/98
CPC classification number: G06T5/006 , G06F18/214 , G06F18/217 , G06T3/0093 , G06T5/20 , G06T7/73 , G06V10/454 , G06V10/764 , G06V10/82 , G06V10/98 , G06V40/193 , G06T2207/30041 , G06T2210/44
Abstract: An example apparatus for adjusting eye gaze in images one or more processors to execute instructions to bidirectionally train a neural network; access a target angle and an input image, the input image including an eye in a first position; generate a vector field with the neural network; and generate a gaze-adjusted image based on the vector field, the gaze-adjusted image including the eye in a second position.
-
10.
公开(公告)号:US11625559B2
公开(公告)日:2023-04-11
申请号:US16833263
申请日:2020-03-27
Applicant: Intel Corporation
Inventor: Avi Kalderon , Gilad Michael , Joao Peralta Moreira , Bhavin Nayak , Furkan Isikdogan
Abstract: An apparatus, method, and a computer readable medium for attenuating visual artifacts in processed images. An annotated dataset of images to be processed by an image processing system is created. An adversarial control network is trained to operate as an image quality expert in classifying images. After the adversarial control network has been trained, the adversarial control network is used to supervise the image processing system on-the-fly.
-
-
-
-
-
-
-
-
-