Abstract:
Indoor positioning networks are faced with several challenges. The methods employed by many indoor positioning systems require highly accurate time synchronization. Where many responders must be synchronized together, the accuracy of the time-synchronization can be improved via a synchronization tree that identifies preferable paths to synchronize responders and eliminates ambiguity. Moreover, where absolute location information is available for less than all of the responders, accurate round trip time measurement can be used to obtain the relative locations of the responders to each other. Where the relative locations are known, any absolute location of a responder can be extrapolated to the remaining responders. Finally, with the use of appropriate algorithms, these round trip time measurements can be collected in reference to a device that is stationary or moving.
Abstract:
Embodiments for providing a query for location information for access points (APs) proximate to a reporting AP are generally described herein. A station may include a processor arranged to generate a Location Configuration Information (LCI) request having subelements arranged to query a reporting AP for a LCI report that includes location information regarding APs proximate to the reporting AP and a transceiver, coupled to the processor, the transceiver being arranged to send to the reporting AP the generated LCI request for the LCI report that includes location information regarding APs proximate to the reporting AP.
Abstract:
Examples are disclosed for a mobile device to determine its location by trilateration with docked mobile devices and, optionally, wireless access points. Locations are determined to within an accuracy of within three feet. The docked mobile devices are at fixed locations such as docked to a docking station. In some examples, a mobile device may perform ranging to the docked mobile devices and fixed wireless stations. Ranging may use a time-of-flight (ToF) process, and may compensate for multipath interference. Trilateration may consider relative accuracies of ranging components. Other examples are described and claimed.
Abstract:
Embodiments of a system and method for establishing a physical location of a device are generally described herein. In some embodiments a device may include a wireless device configured to communicate with an access point through the use of a wireless protocol, and to receive timing information from the access point. In some embodiments a device may receive unsolicited timing information from one or more network devices that intercept communications between the device and the access point. In some embodiments a module in a device may determine a range between the device and the access point or the one or more network devices. In some embodiments a plurality of access points may monitor a communication protocol and provide unsolicited timing information in response to communications between a device and an access point without establishing a connection with the device.
Abstract:
Embodiments of a system and method for establishing a physical location of a device are generally described herein. In some embodiments a device may include a wireless device configured to communicate with an access point through the use of a wireless protocol, and to perform a method for time-of-flight (ToF) positioning that includes a three-stage fine-timing measurement (FTM) procedure that includes: a first stage for negotiating comeback timing for a next FTM exchange, a second stage that includes performing a fine timing measurement exchange and optionally negotiating the comeback timing for the next fine timing measurement exchange, and a third stage that includes reporting and polling the timestamp of the previous fine timing measurement exchange and optionally performing an additional fine timing measurement stage. In some embodiments a module in a device may determine a range between the device and the access point or the one or more network devices.
Abstract:
Embodiments for providing a query for location information for access points (APs) proximate to a reporting AP are generally described herein. A station may include a processor arranged to generate a Location Configuration Information (LCI) request having subelements arranged to query a reporting AP for a LCI report that includes location information regarding APs proximate to the reporting AP and a transceiver, coupled to the processor, the transceiver being arranged to send to the reporting AP the generated LCI request for the LCI report that includes location information regarding APs proximate to the reporting AP.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a Time of Flight (ToF) measurement. For example, a first wireless device may include a controller to perform a Time of Flight (ToF) measurement procedure with a second wireless device; and a radio to communicate with the second wireless device a ToF frame including a first time value of a Time Synchronization Function (TSF) of a sender of the frame to indicate a beginning time of a ToF measurement period, and a second time value of the TSF at transmission of the ToF frame.
Abstract:
Techniques related to providing high perceptual quality video from highly compressed and decompressed reconstructed video are discussed. Such techniques include applying a pretrained decompression upsampling portion of a generative adversarial network to the decompressed reconstructed video to upsample and improve the perceptual quality of the decompressed reconstructed video to generate output video.
Abstract:
Embodiments for providing a query for location information for access points (APs) proximate to a reporting AP are generally described herein. A station may include a processor arranged to generate a Location Configuration Information (LCI) request having subelements arranged to query a reporting AP for a LCI report that includes location information regarding APs proximate to the reporting AP and a transceiver, coupled to the processor, the transceiver being arranged to send to the reporting AP the generated LCI request for the LCI report that includes location information regarding APs proximate to the reporting AP.
Abstract:
Example systems, methods, and devices for provisioning in a wireless network can be provided. In one embodiment, a method can include storing, by a wireless communication device, credentials of one or more trusted network entities in the wireless network, receiving, by the wireless communication device, a request for location information from one or more access points, and transmitting, by the wireless communication device, location information to the one or more access points. The request may include location configuration information request, time of flight request or a fine timing measurement request. The method may also include storing one or more aging parameters for one or more trusted network entities. The credentials include basic service set identification or service set identification. Certain methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.