Abstract:
Enhanced methods for channel quality estimation utilize soft symbol output data to generate a statistic or set of statistics that are representative of BER for each of a plurality of bursts corresponding to a composite channel. The statistics are mapped into a BER estimate to generate individual BER estimates for each of the plurality of bursts. The individual BER estimates are combined to obtain an estimate of the BER for the entire composite channel. Alternatively, the BER estimate for the composite channel may then be mapped into a quality estimate for the composite channel using a monotonic function.
Abstract:
A system and method for reducing the unused capacity of a wireless communication channel utilize the data fields of an special burst (SB) in order to signal physical layer control signaling for coordination between a Node B and a user equipment (UE). The control signaling may include improved reception of SBs, enclose transmit power control commands or any physical layer control signaling for coordination between the UE and the Node B for synchronization timing advance or reconfiguration of the physical channel. This system and method may be applied independently to the uplink and the downlink.
Abstract:
A method for performing transport format combination indicator (TFCI) processing in a wireless communications system begins by collecting received samples for a timeslot. Processing of the received samples for the timeslot that does not require a transport format combination (TFC) code list or a TFC code list valid indicator is performed. Next, a TFCI value for the timeslot is received and is processed at the timeslot rate, producing the TFC code list and the TFC code list valid indicator. Then processing in the timeslot that requires the TFC code list or the TFC code list valid indicator is performed.
Abstract:
A method for differential phase evaluation of M-ary communication data is employed in which the data consists of N sequential symbols r1 . . . rN, each having one of M transmitted phases. Selected sequences of Nnull1 elements that represent possible sequences of phase differentials are evaluated using multiple-symbol differential detection. Using r1 as the reference for each phase differential estimate, sNnull1 phase differential sequences are selected in the form (P2i, P3i, . . . , PNi) for inull1 to s for evaluating said symbol set, where s is predetermined and 1
Abstract:
The present invention is a receiver which includes a blind code detection device for determining the identity of a plurality of channels over which information is to be transmitted when the identity of all channels is not known by the receiver. The blind code detection device generates a candidate channel list filled with the identify of selected channels out of the plurality of channels. A multi-user detection device, responsive to the blind code detection device, processes those channels in the candidate code list.
Abstract:
A method for estimating signal-to-noise ratio (SNR) using a method with low bias that is effective for both positive SNRs and small to negative SNRs. The method is based on an iterative solution for the maximum likelihood estimate of the amplitude from which the SNR can be computed. The method is applicable for various modulated systems, including BPSK, QPSK and MPSK.
Abstract:
Multi-user detection (MUD) performance is optimized to eliminate redundant use of power during processing. An overbuilt A-matrix, i.e., a system response matrix, is provided. The overbuilt A-matrix uses all possible codes, e.g., all codes identified in a candidate code list (CCL) provided by blind code detection (BCD). The overbuilt A-matrix is passed to the MUD which extracts only those rows or columns required for codes that have actually been received, thus eliminating the need to recompute whitening matched filter (WMF) outputs that do not correspond to the actually received code.
Abstract:
An apparatus and method for estimation of signal-to-noise ratio (SNR) with low bias that is effective for both positive SNRs and small to negative SNRs. The estimation is based on an iterative solution for the maximum likelihood estimate of the amplitude from which the SNR can be computed. The estimation is applicable for various modulated systems, including BPSK, QPSK and MPSK.
Abstract:
A system and method for reducing the unused capacity of a wireless communication channel utilize the data fields of an SB in order to signal physical layer control signaling for coordination between a Node B and a UE. The control signaling may include improved reception of SBs, enclose transmit power control commands or any physical layer control signaling for coordination between the UE and the Node B for synchronization timing advance or reconfiguration of the physical channel. This system and method may be applied independently to the uplink and the downlink.
Abstract:
The present invention is a receiver for receiving a communication signal divided into a plurality of timeslots, wherein the timeslots include a plurality of channels, including a burst detector for detecting when a selected one of the plurality of channels of the communication is received. The burst detector comprises a noise estimation device for determining a scaled noise power estimate of the selected one of the timeslots, a matched filter for detecting signal power of the selected one of the timeslots and a signal power estimation device, responsive for the matched filter, for generating a signal power estimate of the, selected one of the timeslots. A comparator responsive to the scaled noise power estimate the signal power estimate is also included in the burst detector for generating a burst detection signal when the signal power estimate is greater than the scaled noise power estimate, and a data estimation device, responsive to the burst detection signal, for decoding the plurality of channels.