Abstract:
A programmably switched, multi-output stage current mirror-based, current-sensing and correction circuit controls the operation of a buck mode DC-DC converter. This correction circuit generates a correction current having a prescribed step-wise temperature-compensating relationship to sensed current. The sensed current is derived from a variable impedance controlled by a sense amplifier coupled via a current feedback resistor to the common output node between a high side power switching device and a low side power switching device of the converter. To program the correction circuit a decoder maps temperature information associated with the low side power switching device and additional programming information into a current mirror control code.
Abstract:
A current-sensing and correction circuit having programmable temperature compensation circuitry that is incorporated into a pulse width modulation controller of a buck mode DC-DC converter. The front end of the controller contains a sense amplifier, having an input coupled via a current feedback resistor to a common output node of the converter. The impedance of a MOSFET, the current through which is sampled by a sample and hold circuit is controlled by the sense amplifier unit. A sensed current correction circuit is coupled between the sample and hold circuit and the controller, and is operative to supply to the controller a correction current having a deterministic temperature-compensating relationship to the sensed current. The ratio of correction current to sensed current equals a value of one at a predetermined temperature, and has other values at temperatures other than at that temperature.
Abstract:
A self-powered overvoltage protection circuit for a regulated DC-DC converter looks for the onset of a very large input voltage prior to regulation. In response to such a voltage during this interval, it turns on a low side electronic power switching device, in accordance with the voltage at one of the phase node and the regulated voltage output terminal from which the protection circuit derives its power. This provides a bypass path for an overvoltage that would otherwise be coupled from the regulated voltage output terminal to one or more load devices.
Abstract:
A DC-to-DC converter includes a pulse width modulation (PWM) circuit cooperating with at least one power switch for supplying power from a source to a load over a range between a lower limit and an upper limit to thereby control an output voltage for the load. The converter may also include a primary feedback control loop cooperating with the PWM circuit for supplying power to the load between the lower and upper limits based upon the output voltage during normal load transient conditions. The converter may also include at least one override feedback control loop cooperating with the PWM circuit for overriding the primary feedback control loop and supplying power to the load at one of the lower and upper limits based upon the output voltage during a corresponding relatively fast load transient condition. Accordingly, relatively fast load transients can be followed by the converter.