SENSOR WITH LOW POWER WITH CLOSED-LOOP-FORCE-FEEDBACK LOOP

    公开(公告)号:US20180017385A1

    公开(公告)日:2018-01-18

    申请号:US15265740

    申请日:2016-09-14

    CPC classification number: G01C19/56 G01C19/5776

    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.

    Sensor with low power with closed-loop-force-feedback loop

    公开(公告)号:US10852135B2

    公开(公告)日:2020-12-01

    申请号:US16514368

    申请日:2019-07-17

    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.

    Drive mode and sense mode resonance frequency matching

    公开(公告)号:US10538427B2

    公开(公告)日:2020-01-21

    申请号:US15682408

    申请日:2017-08-21

    Abstract: In some embodiments, a micro electro mechanical system (MEMS) includes a proof mass, sense electrodes, sense circuitry, and a frequency matching circuitry. The proof mass is configured to move responsive to stimuli. The sense electrodes are configured to generate a signal responsive to the proof mass moving. The sense circuitry is coupled to the sense electrodes. The sense circuitry is configured to receive the generated signal and further configured to process the generated signal. The frequency matching circuitry is configured to apply a DC voltage to the sense electrodes. The DC voltage is configured to change a stiffness of a spring of the proof mass. According to some embodiments, the change in the stiffness of the spring matches a resonance frequency between a sense mode and a drive mode. According to some embodiments, the sense electrodes are a comb structure.

    Sensor with low power with closed-loop-force-feedback loop

    公开(公告)号:US10393522B2

    公开(公告)日:2019-08-27

    申请号:US15265740

    申请日:2016-09-14

    Abstract: A device includes a proof mass of a sensor, capacitive elements, an electrode circuitry, a time multiplexing circuitry, a sense circuitry, and a force feedback circuitry. The proof mass moves from a first position to a second position responsive to an external actuation. The capacitive elements change capacitive charge in response thereto. The electrode circuitry coupled to the capacitive elements generates a charge signal. The time multiplexing circuitry pass the charge signal during a sensing time period and prevents the charge signal from passing through during a forcing time period. The sense circuitry generates a sensed signal from the charge signal. The force feedback circuitry applies a charge associated with the sensed signal to the electrode circuitry during the forcing time period. The electrode circuitry applies the charge received from the force feedback circuitry to the capacitive elements, moving the proof mass from the second position to another position.

Patent Agency Ranking