QUANTUM COMPUTER ARCHITECTURE BASED ON MULTI-QUBIT GATES

    公开(公告)号:US20200219001A1

    公开(公告)日:2020-07-09

    申请号:US16708025

    申请日:2019-12-09

    Applicant: IonQ, Inc.

    Abstract: The disclosure describes various aspects of a practical implementation of multi-qubit gate architecture. A method is described that includes enabling ions in the ion trap having three energy levels, enabling a low-heating rate motional mode (e.g., zig-zag mode) at a ground state of motion with the ions in the ion trap; and performing a Cirac and Zoller (CZ) protocol using the low-heating rate motional mode as a motional state of the CZ protocol and one of the energy levels as an auxiliary state of the CZ protocol, where performing the CZ protocol includes implementing the multi-qubit gate. The method also includes performing one or more algorithms using the multi-qubit gate, including Grover's algorithm, Shor's factoring algorithm, quantum approximation optimization algorithm (QAOA), error correction algorithms, and quantum and Hamiltonian simulations. A corresponding system that supports the implementation of a multi-qubit gate architecture is also described.

    QUANTUM COMPUTER ARCHITECTURE BASED ON MULTI-QUBIT GATES

    公开(公告)号:US20220253739A1

    公开(公告)日:2022-08-11

    申请号:US17732871

    申请日:2022-04-29

    Abstract: The disclosure describes various aspects of a practical implementation of multi-qubit gate architecture. A method is described that includes enabling ions in the ion trap having three energy levels, enabling a low-heating rate motional mode (e.g., zig-zag mode) at a ground state of motion with the ions in the ion trap; and performing a Cirac and Zoller (CZ) protocol using the low-heating rate motional mode as a motional state of the CZ protocol and one of the energy levels as an auxiliary state of the CZ protocol, where performing the CZ protocol includes implementing the multi-qubit gate. The method also includes performing one or more algorithms using the multi-qubit gate, including Grover's algorithm, Shor's factoring algorithm, quantum approximation optimization algorithm (QAOA), error correction algorithms, and quantum and Hamiltonian simulations. A corresponding system that supports the implementation of a multi-qubit gate architecture is also described.

    LASER CAVITY REPETITION RATE TUNING AND HIGH-BANDWIDTH STABILIZATION

    公开(公告)号:US20200028312A1

    公开(公告)日:2020-01-23

    申请号:US16518714

    申请日:2019-07-22

    Abstract: The disclosure describes aspects of laser cavity repetition rate tuning and high-bandwidth stabilization of pulsed lasers. In one aspect, an output optical coupler is described that includes a cavity output coupler mirror, a piezoelectric actuator coupled to the cavity output coupler mirror, a locking assembly within which the cavity output coupler mirror and the piezoelectric actuator are positioned, and one or more components coupled to the locking assembly. The components are configured to provide multiple positional degrees of freedom for tuning a frequency comb spectrum of the pulsed laser (e.g., tuning a repetition rate) by adjusting at least one position of the locking assembly with the cavity output coupler mirror. A method of adjusting an output optical coupler in a pulsed laser is also described. These techniques may be used in different applications, including quantum information processing.

    PARALLEL MULTI-QUBIT OPERATIONS ON A UNIVERSAL ION TRAP QUANTUM COMPUTER

    公开(公告)号:US20220083889A1

    公开(公告)日:2022-03-17

    申请号:US17448652

    申请日:2021-09-23

    Abstract: The disclosure describes various aspects related to enabling effective multi-qubit operations, and more specifically, to techniques for enabling parallel multi-qubit operations on a universal ion trap quantum computer. In an aspect, a method of performing quantum operations in an ion trap quantum computer or trapped-ion quantum system includes implementing at least two parallel gates of a quantum circuit, each of the at least two parallel gates is a multi-qubit gate, each of the at least two parallel gates is implemented using a different set of ions of a plurality of ions in a ion trap, and the plurality of ions includes four or more ions. The method further includes simultaneously performing operations on the at least two parallel gates as part of the quantum operations. A trapped-ion quantum system and a computer-readable storage medium corresponding to the method described above are also disclosed.

Patent Agency Ranking