摘要:
A nonaqueous electrolyte secondary battery comprising positive and negative electrodes capable of absorbing and desorbing lithium ions; a nonaqueous electrolytic solution; and a separator provided between the positive electrode and the negative electrode. The negative electrode comprises a negative electrode active material layer containing at least a styrene polymer as a binder in a content of 0.3 to 8.0 mass % based on the total mass of the negative electrode active material layer. The nonaqueous electrolytic solution contains at least a cyclic sulfonic acid ester including at least two sulfonyl groups in a content of 0.002 to 5.0 mass % based on the total mass of the nonaqueous electrolytic solution.
摘要:
A lithium ion secondary battery electrode according to the present invention includes (A) a non-fluorinated polymer; (B) an active material; (C) a thickener; and (D) a conductive auxiliary agent. An elution ratio of (A) the non-fluorinated polymer in an electrolytic solution solvent at 60° C. is equal to or less than 1.0 mass %, and a swelling ratio of (A) the non-fluorinated polymer in the electrolytic solution solvent at 60° C. is equal to or more than 10 mass % and equal to or less than 50 mass %.
摘要:
A negative electrode for a lithium ion secondary battery according to the present invention includes a negative electrode active material and a binder, in which the negative electrode active material satisfies the following requirements (A), (B), and (C):(A) graphite powder is used as a core material, and at least a part of a surface of the graphite powder is coated with a carbon material having lower crystallinity than the graphite powder;(B) a specific surface area measured using a nitrogen adsorption BET method is more than or equal to 0.8 m2/g and less than or equal to 5.3 m2/g; and(C) an amount of dibutyl phthalate absorption measured according to JIS K 6217-4 is more than or equal to 32 cm3/100 g and less than or equal to 45 cm3/100 g.
摘要:
There are provided a nonaqueous-type electrolyte solution having high flame retardancy and a good capacity retention rate, and a device comprising the nonaqueous-type electrolyte solution. The nonaqueous-type electrolyte solution is used in a device comprising a positive electrode, a negative electrode and the nonaqueous-type electrolyte solution, and contains a lithium salt and a compound having a phosphazene structure, and further contains 0.05% by mass or more and 12.0% by mass or less of at least one disulfonate ester selected from a cyclic disulfonate ester and a chain disulfonate ester based on the total of the nonaqueous-type electrolyte solution.
摘要:
The present invention provides a polymer gel electrolyte capable of inhibiting the cell expansion of a polymer secondary battery and improving the cycle characteristics and high-temperature storage characteristics of a polymer secondary battery. The present invention relates to a polymer gel electrolyte comprising an aprotic solvent; a supporting salt; a cyclic sulfonic acid ester which includes at least two sulfonyl groups; and a crosslinked polymer obtained by crosslinking a methacrylic acid ester polymer represented by general formula (1) below. In the general formula (1), n meets 1800
摘要:
A non-aqueous electrolyte can suppress decomposition of a solvent, improve the cycle life of a secondary battery, suppress the rise of resistance of a secondary battery and improve the capacity maintenance ratio of a secondary battery A non-aqueous electrolyte secondary battery formed by using such a non-aqueous electrolyte includes a non-aqueous electrolyte containing an aprotic solvent and a disulfonic acid ester as expressed by chemical formula 1 shown below, a positive electrode and a negative electrode:
摘要:
To provide high energy density, good cycle properties and rate characteristics and long-term safety of a lithium ion battery containing at least an ionic liquid and a lithium salt. The above problems are solved by suppressing reduction and decomposition of the ionic liquid on an anode by using a graphite coated with an amorphous carbon or onto which an amorphous carbon is deposited as an anode active material.
摘要:
There are provided a nonaqueous-type electrolyte solution having high flame retardancy and a good capacity retention rate, and a device comprising the nonaqueous-type electrolyte solution. The nonaqueous-type electrolyte solution is used in a device comprising a positive electrode, a negative electrode and the nonaqueous-type electrolyte solution, and contains a lithium salt and a compound having a phosphazene structure, and further contains 0.05% by mass or more and 12.0% by mass or less of at least one disulfonate ester selected from a cyclic disulfonate ester and a chain disulfonate ester based on the total of the nonaqueous-type electrolyte solution.
摘要:
An object of the present invention is to provide a gel electrolyte for a lithium ion secondary battery having flame retardancy over a long period and a good capacity maintenance rate. The gel electrolyte for a lithium ion secondary battery according to the exemplary embodiment contains a lithium salt, a copolymer of at least one first monomer selected from compounds represented by chemical formulae (1) and (2) and a second monomer represented by chemical formula (4), at least one oxo-acid ester derivative of phosphorus selected from compounds represented by chemical formulae (5) to (7), and at least one disulfonate ester selected from a cyclic-chain type disulfonate ester represented by chemical formula (8) and a linear-chain type disulfonate ester represented by chemical formula (9).
摘要:
A non-aqueous electrolyte can suppress decomposition of a solvent, improve the cycle life of a secondary battery, suppress the rise of resistance of a secondary battery and improve the capacity maintenance ratio of a secondary battery. A non-aqueous electrolyte secondary battery formed by using such a non-aqueous electrolyte includes a non-aqueous electrolyte containing an aprotic solvent and a disulfonic acid ester as expressed by chemical formula 1 shown below, a positive electrode and a negative electrode: