摘要:
A process is disclosed for delivering a stable, fat soluble vitamin to a feed composition. The process includes dissolving a fat soluble vitamin in a solvent to form a vitamin-enriched solvent and combining the vitamin-enriched feeds; processes for supplementing the diet of a feed animal with a fat soluble vitamin, processes for extending the shelf life of an animal product, and processes for making stable vitamin-enriched supplements for feed compositions are also provided.
摘要:
A process is disclosed for delivering a stable, fat soluble vitamin to a feed composition. The process includes dissolving a fat soluble vitamin in a solvent to form a vitamin-enriched solvent and combining the vitamin-enriched feeds; processes for supplementing the diet of a feed animal with a fat soluble vitamin, processes for extending the shelf life of an animal product, and processes for making stable vitamin-enriched supplements for feed compositions are also provided.
摘要:
The present invention relates to the field of reduction of methane emission in ruminants. Particularly, it relates to the use of a feed composition or a feed additive comprising at least one antibiotic and at least one organic molecule substituted at any position with at least one nitrooxy group for reducing the production of methane emanating from the digestive activities of ruminants, and/or to improve the ruminant performance.
摘要:
The invention relates to the use of at least one bacterial amylase in feed for ruminant animals of the subfamily Bovinae in particular for improving milk yield, apparent digestibility of the diet fed, feedstuff dry matter disappearance, weight gain, and/or Feed Conversion Ratio (FCR). Examples of bovine animals are dairy cows and beef cattle. The invention also relates to the use of such amylases in feed and feed additives such as premix, concentrates and total mixed ration (TMR). The amylase may be used in combination with cellulase for improving milk yield and/or back fat thickness. Preferred amylases are derived from Bacillus halmapalus, licheniformis, and stearothermophilus and are preferably homologous to Bacillus stearothermophilus amylase.