Abstract:
An antenna is provided having a good matching characteristics when immersed in a fluid such as saline water, oil, or other liquids (“the phantom liquid”). In some embodiments, the antenna provides a tight capacitive coupling with the phantom liquid through the use of a higher permeability cover and absence of a gap between the cover and the antenna body. One embodiment employs a tunably capacitively loaded inverted “F” antenna structure. Additional embodiments of the invention provide an antenna tuning system that saves power by utilizing very low duty cycle periodical refreshing charge at a tuning varactor diode coupled to the antenna.
Abstract:
A single sideband mixer circuit includes a voltage controlled oscillator operable a tunable frequency f1. The mixer circuit outputs a frequency signal at a frequency f1±f2. A tracking filter operates to filter the frequency signal and generate a first output signal at the frequency f1±f2. A resonance frequency fr of the tracking filter is tunable to substantially match the frequency f1±f2 of the frequency signal. The output signal of the tracking filter may be processed by a phase lock loop circuit to generate a control signal for controlling the setting of the tunable frequency f1 and resonance frequency fr. Alternatively, the output signal of the tracking filter may be divided and the divided signal processed by a phase lock loop circuit to generate the control signal for controlling setting of the tunable frequency f1 and resonance frequency fr.
Abstract:
A single sideband mixer circuit includes a voltage controlled oscillator operable a tunable frequency f1. The mixer circuit outputs a frequency signal at a frequency f1±f2. A tracking filter operates to filter the frequency signal and generate a first output signal at the frequency f1±f2. A resonance frequency fr of the tracking filter is tunable to substantially match the frequency f1±f2 of the frequency signal. The output signal of the tracking filter may be processed by a phase lock loop circuit to generate a control signal for controlling the setting of the tunable frequency f1 and resonance frequency fr. Alternatively, the output signal of the tracking filter may be divided and the divided signal processed by a phase lock loop circuit to generate the control signal for controlling setting of the tunable frequency f1 and resonance frequency fr.
Abstract:
A communications device and receiver system and method to efficiently distribute functions among radio frequency (RF), analog front end (AFE) and baseband modules for ultra-low power consumption comprising a wideband receiver subsystem selectively coupled to a signal input receiving a first frequency band, a narrowband received subsystem selectively coupled to the signal input receiving a second frequency band and, a controller configured to monitor the first frequency band using the first receiver subsystem and if a wake up signal is detected using the first receiver subsystem, connect the second receiver subsystem to the signal input and tune the second receiver subsystem to a channel transmitting the wake up signal, the wake up signal including channel selection information defining the channel for subsequent communications. Wherein, the two frequency bands overlap and center on different frequencies.
Abstract:
A single sideband mixer circuit includes a voltage controlled oscillator operable a tunable frequency f1. The mixer circuit outputs a frequency signal at a frequency f1±f2. A tracking filter operates to filter the frequency signal and generate a first output signal at the frequency f1±f2. A resonance frequency fr of the tracking filter is tunable to substantially match the frequency f1±f2 of the frequency signal. The output signal of the tracking filter may be processed by a phase lock loop circuit to generate a control signal for controlling the setting of the tunable frequency f1 and resonance frequency fr. Alternatively, the output signal of the tracking filter may be divided and the divided signal processed by a phase lock loop circuit to generate the control signal for controlling setting of the tunable frequency f1 and resonance frequency fr.
Abstract:
A comparison is made in a number of scenarios of a current channel gain setting for a receiver to a threshold. If the current channel gain setting is less than the threshold, then current within at least a portion of the receiver is decreased. In one scenario, the comparison is only made in event that no single tone interferer is detected. In another scenario, the comparison is made to a tolerable single tone blocker threshold, and if greater then current is decreased. In another scenario, the comparison is made to an acceptable intermodulation response rejection threshold, and if greater then current is decreased. In yet another scenario, the comparison is made to an acceptable spurious free dynamic range threshold, and if greater then current is decreased. The portions of the receiver for which current decreases are implemented include a low noise amplifier, mixer, voltage controlled oscillator and variable gain amplifiers.
Abstract:
A comparison is made in a number of scenarios of a current channel gain setting for a receiver to a threshold. If the current channel gain setting is less than the threshold, then current within at least a portion of the receiver is decreased. In one scenario, the comparison is only made in event that no single tone interferer is detected. In another scenario, the comparison is made to a tolerable single tone blocker threshold, and if greater then current is decreased. In another scenario, the comparison is made to an acceptable intermodulation response rejection threshold, and if greater then current is decreased. In yet another scenario, the comparison is made to an acceptable spurious free dynamic range threshold, and if greater then current is decreased. The portions of the receiver for which current decreases are implemented include a low noise amplifier, mixer, voltage controlled oscillator and variable gain amplifiers.
Abstract:
A single sideband mixer circuit includes a voltage controlled oscillator operable a tunable frequency f1. The mixer circuit outputs a frequency signal at a frequency f1±f2. A tracking filter operates to filter the frequency signal and generate a first output signal at the frequency f1±f2. A resonance frequency fr of the tracking filter is tunable to substantially match the frequency f1±f2 of the frequency signal. The output signal of the tracking filter may be processed by a phase lock loop circuit to generate a control signal for controlling the setting of the tunable frequency f1 and resonance frequency fr. Alternatively, the output signal of the tracking filter may be divided and the divided signal processed by a phase lock loop circuit to generate the control signal for controlling setting of the tunable frequency f1 and resonance frequency fr.
Abstract:
A receiver for ultra-wideband communications is provided. One feature of the receiver architecture is that includes only a single correlator. The receiver may be used in wireless and wire communication mediums. The single correlator may be used to update a locally generated signal based on an incoming signal and detect data. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
A portable medical device comprises an omnidirectional antenna; a data interface configured to receive medical video data; and a controller configured to operate in a predetermined area of reception within a health care facility with respect to a transceiver and configured to use ultra wideband communications to transmit data to the transceiver at a rate greater than about 100 MB/s with a spectral power density below a predetermined level. The transceiver is configured to provide the predetermined area of reception using a high grain antenna and is configured to use ultra wideband communications to transmit data to the first transceiver at a rate less than about 100 MB/s with a spectral power density below the predetermined level.