摘要:
A system and method for a neural interface system with a unique identification code includes a sensor including a plurality of electrodes to detect multicellular signals, an processing unit to process the signals from the sensor into a suitable control signal for a controllable device such as a computer or prosthetic limb. The unique identification code is embedded in one or more discrete components of the system. Internal and external system checks for compatibility and methods of ensuring safe and effective performance of a system with detachable components are also disclosed.
摘要:
A system and method for a neural interface system with a unique identification code includes a sensor including a plurality of electrodes to detect multicellular signals, an processing unit to process the signals from the sensor into a suitable control signal for a controllable device such as a computer or prosthetic limb. The unique identification code is embedded in one or more discrete components of the system. Internal and external system checks for compatibility and methods of ensuring safe and effective performance of a system with detachable components are also disclosed.
摘要:
Various embodiments of a biological interface system and related methods are disclosed. The system may comprise a sensor comprising a plurality of electrodes for detecting multicellular signals emanating from one or more living cells of a patient and a processing unit configured to receive the multicellular signals from the sensor and process the multicellular signals to produce a processed signal. The processing unit may be configured to transmit the processed signal to a controlled device that is configured to receive the processed signal. The system is configured to perform an integrated patient training routine to provide a time varying stimulus to the patient and to generate one or more system configuration parameters used by the processing unit to produce the processed signal.
摘要:
Various embodiments of a biological interface system and related methods are disclosed. The system may comprise a sensor comprising a plurality of electrodes for detecting multicellular signals emanating from one or more living cells of a patient and a processing unit configured to receive the multicellular signals from the sensor and process the multicellular signals to produce a processed signal. The processing unit may be configured to transmit the processed signal to a controlled device that is configured to receive the processed signal. The system is configured to perform an integrated patient training routine to generate one or more system configuration parameters that are used by the processing unit to produce the processed signal.
摘要:
Various embodiments of a biological interface system and related methods are disclosed. The system may comprise a sensor comprising a plurality of electrodes for detecting multicellular signals emanating from one or more living cells of a patient and a processing unit configured to receive the multicellular signals from the sensor and process the multicellular signals to produce a processed signal. The processing unit may be configured to transmit the processed signal to a controlled device that is configured to receive the processed signal. The system is configured to perform an integrated patient training routine to generate one or more system configuration parameters that are used by the processing unit to produce the processed signal.
摘要:
A system and method for a neural interface system with a unique identification code includes a sensor including a plurality of electrodes to detect multicellular signals, an processing unit to process the signals from the sensor into a suitable control signal for a controllable device such as a computer or prosthetic limb. The unique identification code is embedded in one or more discrete components of the system. Internal and external system checks for compatibility and methods of ensuring safe and effective performance of a system with detachable components are also disclosed.
摘要:
A system and method for a neural interface system with integral calibration elements may include a sensor including a plurality of electrodes to detect multicellular signals, an interface to process the signals from the sensor into a suitable control signal for a controllable device, such as a computer or prosthetic limb, and an integrated calibration routine to efficiently create calibration output parameters used to generate the control signal. A graphical user interface may be used to make various portions of the calibration and signal processing configuration more efficient and effective.
摘要:
A system and method for a neural interface system with integral calibration elements may include a sensor including a plurality of electrodes to detect multicellular signals, an interface to process the signals from the sensor into a suitable control signal for a controllable device, such as a computer or prosthetic limb, and an integrated calibration routine to efficiently create calibration output parameters used to generate the control signal. A graphical user interface may be used to make various portions of the calibration and signal processing configuration more efficient and effective.
摘要:
Various embodiments of a biological interface system and related methods are disclosed. The system may comprise a sensor comprising a plurality of electrodes for detecting multicellular signals emanating from one or more living cells of a patient and a processing unit configured to receive the multicellular signals from the sensor and process the multicellular signals to produce a processed signal. The processing unit may be configured to transmit the processed signal to a controlled device that is configured to receive the processed signal. The system is configured to perform an integrated patient training routine to generate one or more system configuration parameters that are used by the processing unit to produce the processed signal.
摘要:
A system and method for a neural interface system with integral calibration elements may include a sensor including a plurality of electrodes to detect multicellular signals, an interface to process the signals from the sensor into a suitable control signal for a controllable device, such as a computer or prosthetic limb, and an integrated calibration routine to efficiently create calibration output parameters used to generate the control signal. A graphical user interface may be used to make various portions of the calibration and signal processing configuration more efficient and effective.