Abstract:
A method of assembling an air distribution system for use in a rotor blade of a wind turbine wherein the rotor blade includes a sidewall extending from a blade root towards a blade tip. The method includes coupling a manifold to the sidewall, wherein the manifold extends from the blade root towards the blade tip and has a root end and an opposing tip end defining a passage from the root end to the tip end. A plurality of apertures is defined through the sidewall. The apertures provide flow communication between the passage and ambient air. A debris collector is coupled to the tip end of the manifold and is configured to collect debris flowing through the air distribution system.
Abstract:
A method for operating a wind turbine includes operatively coupling a fluid container within the wind turbine. The fluid container is in flow communication with an air distribution system at least partially defined within a blade of the wind turbine. The method further includes channeling a fluid from the fluid container into the air distribution system, and discharging the fluid from the air distribution system through at least one aperture of the air distribution system defined through an outer surface of the blade to facilitate removing debris from the air distribution system.
Abstract:
An active flow control system for manipulating a boundary layer of air across a wind turbine rotor blade. The wind turbine rotor blade has at least one sidewall defining a cavity therein. The sidewall extends between a leading edge and an axially spaced trailing edge. The active flow control system includes an air discharge assembly that is coupled to the sidewall. The air discharge assembly is configured to selectively discharge air from within the wind turbine rotor blade into the boundary layer. An air suction assembly is coupled to the sidewall and to the air discharge assembly. The air suction assembly is configured to channel air from the boundary layer to the air discharge assembly.
Abstract:
A method of assembling an air distribution system for use in a rotor blade of a wind turbine wherein the rotor blade includes a sidewall extending from a blade root towards a blade tip. The method includes coupling a manifold to the sidewall, wherein the manifold extends from the blade root towards the blade tip and has a root end and an opposing tip end defining a passage from the root end to the tip end. A plurality of apertures is defined through the sidewall. The apertures provide flow communication between the passage and ambient air. A debris collector is coupled to the tip end of the manifold and is configured to collect debris flowing through the air distribution system.
Abstract:
A method of operating a wind turbine is provided. The wind turbine has at least one rotor blade and an active flow control (AFC) system. The at least one rotor blade has at least one aperture defined through a surface thereof, and the AFC system is configured to modify aerodynamic properties of the at least one rotor blade by ejecting gas through the at least one aperture. The method includes operating the wind turbine in a first mode, determining an environmental condition surrounding the wind turbine indicative of fouling of the AFC system, and operating the wind turbine in a second mode different than the first mode based on the environmental condition. The second mode facilitates reducing fouling of the AFC system.
Abstract:
A control system for use with a wind turbine is provided. The wind turbine includes a rotor, a blade coupled to the rotor, a sensor configured to obtain a measurement of the wind turbine, and an active flow control system at least partially defined within the blade. The control system is configured to operate the active flow control system in a first mode, receive a signal from the sensor indicating a load imbalance on the rotor, and change an operation of the active flow control system from the first mode to a second mode based on the signal. The second mode is configured to reduce the load imbalance on the rotor.
Abstract:
A method of assembling an air distribution system for use in a rotor blade of a wind turbine. The rotor blade includes a sidewall at least partially defining a cavity extending from a blade root towards a blade tip. The method includes positioning at least a portion of a manifold within the cavity and coupling the manifold to the sidewall. The manifold extends from the blade root towards the blade tip and has a root end and an opposing tip end. A passage is defined from the root end to the tip end. A flow control device is coupled to the manifold root end and configured to channel air through the manifold. A bypass flow assembly is coupled to the manifold and configured to channel air through the air distribution system with the flow control device in a non-operating configuration.
Abstract:
An active flow control (AFC) system for use with a wind turbine is provided. The wind turbine includes at least one rotor blade. The AFC system includes at least two manifolds at least partially defined within the at least one rotor blade, at least one aperture in flow communication with each manifold of the at least two manifolds, a gas supply coupled in flow communication with the at least two manifolds, and a valve system operatively coupled to the gas supply. The valve system is configured to block a gas flow to a first manifold of the at least two manifolds to redistribute the gas flow to a second manifold of the at least two manifolds.
Abstract:
A method of operating a wind turbine that includes a flow control system includes operating the wind turbine in a first mode, operating the wind turbine in a second mode that is different than the first mode, acquiring operational data of the wind turbine during at least the second mode, determining an effectiveness of the flow control system using the acquired operational data, and performing an action based on the effectiveness of the flow control system.
Abstract:
A method of operating a wind turbine having at least one rotor blade and an active flow control (AFC) system is provided. The at least one rotor blade has at least one aperture defined through a surface thereof, and the AFC system is configured to modify aerodynamic properties of the rotor blade by ejecting gas through the aperture. The method includes operating the wind turbine in a normal mode, determining whether an estimated insect density value surrounding the wind turbine is above an insect density threshold value based on a measured environmental condition, and changing a mode of the wind turbine from the normal mode to a cleaning mode different than the normal mode based on the estimated insect density value. The cleaning mode includes adjusting at least one operation parameter of the wind turbine based on the estimated insect density value such that fouling of the aperture is reduced.