Abstract:
The subject matter disclosed herein relates to determining a lithographic set point using simulations of optical proximity correction verification. In one embodiment, a computer-implemented method of determining a lithographic tool set point for a lithographic process is disclosed. The method may include: providing a model of a production lithographic process including simulations of printed shapes; analyzing the model of the production lithographic process to determine whether a set of structures on a production mask used in the production lithographic process to create the printed shapes will fail under a plurality of set points; determining an operating region of set points where the set of structures on the production mask does not fail; and establishing a set point location within the operating region based upon a set point selection function.
Abstract:
Solutions for accounting for photomask deviations in a lithographic process during optical proximity correction verification are disclosed. In one embodiment, a method includes: identifying a wafer control structure in a data set representing one of a first chip or a kerf; biasing the data set representing the first chip in the case that the wafer control structure is in the data set representing the first chip; biasing the data set representing the kerf or a second chip distinct from the first chip, in the case that the wafer control structure is in the data set representing the kerf or the second chip; simulating formation of the wafer control structure; determining whether the simulated wafer control structure complies with a target control structure; and iteratively adjusting an exposure dose condition in the case that the simulated wafer control structure does not comply with the target control structure.