Abstract:
There are provided an optical non-destructive inspection apparatus and an optical non-destructive inspection method. The apparatus includes a focusing-collimating unit, a heating laser beam source, a heating laser beam guide unit, an infrared detector, an emitted-infrared guide unit, first and second correcting laser beam source, first and second correcting laser beam guide units, first and second correcting laser detectors, first and second reflected laser beam guide units, and a control unit. The control unit controls the heating laser beam source and the first and second correcting laser beam sources, measures a temperature rise characteristic that is a temperature rise state of a measurement spot based on a heating time, on the basis of a detection signal from the infrared detector and detection signals from the first and second correcting laser detectors, and determines a state of a measurement object based on the measured temperature rise characteristic.
Abstract:
In an optical non-destructive inspection method which can perform inspection accurately in a short time. In the method, a heating laser beam source, at least one infrared detector, a control unit, and a storage unit are used. The storage unit stores a parameter state-time constant characteristic in which a parameter corresponding to a state of the measurement object is correlated with a time constant indicating the curve shape of the temperature rise characteristic that varies depending on the state of the parameter. The control unit determines the time constant based on the curve shape of the temperature rise characteristic, which extends from a heating start time point to a time point at which a saturated temperature is reached, and determines the state of the parameter of the measurement object based on the determined time constant and the parameter state-time constant characteristic.
Abstract:
An optical non-destructive inspection method includes: heating including setting a measurement spot on a surface of a workpiece and irradiating the measurement spot with heating laser light using a heating laser light source, heat ray detectors, and a controller; acquiring a temperature rise property that is a temperature rise state of the measurement spot according to a heating time by detecting a heat ray radiated from the measurement spot to determine a temperature at the measurement spot; and determining whether or not a pressure contact state at pressure contact portions, which include a contact area and a contact pressure, is appropriate based on the temperature rise property.
Abstract:
There are provided an optical non-destructive inspection apparatus that can inspect a measurement object such as a wire bonding portion. The apparatus includes a focusing-collimating unit, a heating laser beam source, a heating laser beam guide unit, a first infrared detector, a second infrared detector, an emitted-infrared selective guide unit, and a control unit. The control unit controls the heating laser beam source, measures a temperature rise characteristic that is a temperature rise state of a measurement spot based on a heating time, on the basis of a ratio between a detected value from the first infrared detector and a detected value from the second infrared detector, determines a state of a measurement object based on the temperature rise characteristic, and changes at least one of wavelengths of infrared light beams guided to the first infrared detector and the second infrared detector based on a measured temperature during measurement.
Abstract:
An optical non-destructive inspection method includes: a heating laser emission step; an information acquisition step of acquiring measurement point information and heating laser information; a joint state determination step of determining the joint state on the basis of the measurement point information and the heating laser information; and a preliminary heating step, which is performed before the heating laser emission step, of causing thermal distortion in a first member by irradiating a measurement point, or a preliminary heating range that includes the measurement point, or a preliminary heating point set in the preliminary heating range, with preliminary heating laser adjusted to a thermal distortion generation intensity, which is a constant output intensity, and an irradiation time such that the thermal distortion is caused without destroying the first member.
Abstract:
There are provided an optical non-destructive inspection apparatus and an optical non-destructive inspection method. The apparatus includes a focusing-collimating unit, a heating laser beam source, a heating laser beam guide unit, an infrared detector, an emitted-infrared guide unit, first and second correcting laser beam source, first and second correcting laser beam guide units, first and second correcting laser detectors, first and second reflected laser beam guide units, and a control unit. The control unit controls the heating laser beam source and the first and second correcting laser beam sources, measures a temperature rise characteristic that is a temperature rise state of a measurement spot based on a heating time, on the basis of a detection signal from the infrared detector and detection signals from the first and second correcting laser detectors, and determines a state of a measurement object based on the measured temperature rise characteristic.
Abstract:
An optical nondestructive testing method includes: a laser emitting step involving emitting a heating laser from a laser output device such that the intensity of the heating laser applied to a measurement point changes sinusoidally; a laser intensity measuring step involving measuring the intensity of the heating laser by a phase difference detector; an infrared radiation intensity measuring step involving measuring, by the phase difference detector, the intensity of infrared radiation radiating from the measurement point; a phase difference measuring step involving determining, by the phase difference detector, a phase difference between the intensity of the heating laser and the intensity of the infrared radiation, and outputting the phase difference determined to a determiner from the phase difference detector; and a connection area calculating step involving determining, by the determiner, a connection area in accordance with the phase difference and phase difference-connection area correlation information.