Abstract:
When an outer ring is fitted to an inner periphery of an input member, which defines a center hole, and an inner ring is fitted to an eccentric portion with clearances in a reduction-transmission mechanism, in a state where tooth tips of the input member contact bottomlands of a rotation force applying member on a line perpendicular to a second axis and a fourth axis, a size between the second axis and a third axis is set to a size that is smaller than or equal to half of a size obtained by adding a diameter difference between an outside diameter of a ball bearing and an inside diameter of the input member, which defines the center hole, a diameter difference between an inside diameter of the ball bearing and an outside diameter of the eccentric portion and an operating clearance of the ball bearing.
Abstract:
When a bearing includes outer and inner rings and the outer ring is fitted to the inner periphery of an input member, which defines a center hole, with a clearance and the inner ring is fitted to an eccentric portion with a clearance, a size between a second axis and a third axis is set to a size that is smaller than or equal to half of a size obtained by adding a diameter difference between an outside diameter of the bearing and an inside diameter of the input member, which defines the center hole, a diameter difference between an inside diameter of the bearing and an outside diameter of the eccentric portion and an operating clearance of the bearing in a state where the input member has been moved to contact the housing on a line perpendicular to the second axis and a fourth axis.
Abstract:
When an outer ring is fitted to an inner periphery of an input member, which defines a center hole, and an inner ring is fitted to an eccentric portion with clearances in a reduction-transmission mechanism, in a state where tooth tips of the input member contact bottomlands of a rotation force applying member on a line perpendicular to a second axis and a fourth axis, a size between the second axis and a third axis is set to a size that is smaller than or equal to half of a size obtained by adding a diameter difference between an outside diameter of a ball bearing and an inside diameter of the input member, which defines the center hole, a diameter difference between an inside diameter of the ball bearing and an outside diameter of the eccentric portion and an operating clearance of the ball bearing.
Abstract:
When a bearing includes outer and inner rings and the outer ring is fitted to the inner periphery of an input member, which defines a center hole, with a clearance and the inner ring is fitted to an eccentric portion with a clearance, a size between a second axis and a third axis is set to a size that is smaller than or equal to half of a size obtained by adding a diameter difference between an outside diameter of the bearing and an inside diameter of the input member, which defines the center hole, a diameter difference between an inside diameter of the bearing and an outside diameter of the eccentric portion and an operating clearance of the bearing in a state where the input member has been moved to contact the housing on a line perpendicular to the second axis and a fourth axis.
Abstract:
In a reduction-transmission mechanism, an input member is arranged at such a position that a size obtained by adding a fitting clearance formed between a ball bearing and an outer periphery of an eccentric portion, a fitting clearance formed between the ball bearing and an inner periphery of the input member, which defines a center hole, and a radial internal clearance of the ball bearing is smaller than a size obtained by adding a fitting clearance formed between an outer periphery of each of a plurality of output members and a corresponding one of needle roller bearings, a fitting clearance formed between each of the needle roller bearings and an inner periphery of the input member, which defines a corresponding one of a plurality of pin insertion holes, and a radial internal clearance of each of the needle roller bearings.