摘要:
Disclosed is a method to provide a new deep trench collar process which reduces encroachment of strap diffusion upon array metal oxide semiconductor field effect transistors (MOSFET's) in semiconductor devices. The invention allows a reduced effective deep trench edge bias at the top of the deep trench, without compromising storage capacitance, by maximizing the distance between the MOSFET gate conductor and the deep trench storage capacitor.
摘要:
A memory cell structure including a planar semiconductor substrate. A deep trench is in the semiconductor substrate. The deep trench has a plurality of side walls and a bottom. A storage capacitor is at the bottom of the deep trench. A vertical transistor extends down at least one side wall of the deep trench above the storage capacitor. The transistor has a source diffusion extending in the plane of the substrate adjacent the deep trench. An isolation extends down at least one other sidewall of the deep trench opposite the vertical transistor. Shallow trench isolation regions extend along a surface of the substrate in a direction transverse to the sidewall where the vertical transistor extends. A gate conductor extends within the deep trench. A wordline extends over the deep trench and is connected to the gate conductor. A bitline extends above the surface plane of the substrate and has a contact to the source diffusion between the shallow trench isolation regions.
摘要:
A method for clearing an isolation collar from a first interior surface of a deep trench at a location above a storage capacitor while leaving the isolation collar at other surfaces of the deep trench. A barrier material is deposited above a node conductor of the storage capacitor. A layer of silicon is deposited over the barrier material. Dopant ions are implanted at an angle into the layer of deposited silicon within the deep trench, thereby leaving the deposited silicon unimplanted along one side of the deep trench. The unimplanted silicon is etched. The isolation collar is removed in locations previously covered by the unimplanted silicon, leaving the isolation collar in locations covered by the implanted silicon.
摘要:
A method of forming a vertical transistor. A pad layer is formed over a semiconductor substrate. A trough is formed through the pad layer and in the semiconductor substrate. A bit line is formed buried in the trough. The bit line is enclosed by a dielectric material. A strap is formed extending through the dielectric material to connect the bit line to the semiconductor substrate. The trough is filled above the bit line with a conductor. The conductor is cut along its longitudinal axis such that the conductor remains on one side of the trough. Wordline troughs are formed, substantially orthogonal to the bit line, above the semiconductor substrate. A portion of the conductor is removed under the wordline trough to separate the conductor into separate gate conductors. Wordlines are formed in the wordline trough connected to the separate gate conductors.
摘要:
A memory cell structure including a planar semiconductor substrate. A deep trench is in the semiconductor substrate. The deep trench has a plurality of side walls and a bottom. A storage capacitor is at the bottom of the deep trench. A vertical transistor extends down at least one side wall of the deep trench above the storage capacitor. The transistor has a source diffusion extending in the plane of the substrate adjacent the deep trench. An isolation extends down at least one other sidewall of the deep trench opposite the vertical transistor. Shallow trench isolation regions extend along a surface of the substrate in a direction transverse to the sidewall where the vertical transistor extends. A gate conductor extends within the deep trench. A wordline extends over the deep trench and is connected to the gate conductor. A bitline extends above the surface plane of the substrate and has a contact to the source diffusion between the shallow trench isolation regions.
摘要:
A structure and process for fabricating embedded vertical DRAM cells includes fabricating vertical MOSFET DRAM cells with silicided polysilicon layers in the array regions, the landing pad and/or interconnect structures, the support source and drain regions and/or the gate stack. The process eliminates the need for a M0 metallization layer.
摘要:
A method and structure for a dynamic random access memory device comprising a storage trench, a storage conductor within the storage trench, a lip strap connected to the storage conductor, and a control device electrically connected to the storage conductor through the lip strap. The trench contains a corner adjacent the control device and the lip strap and has a conductor surrounding the corner. The control device has a control device conductive region adjacent the trench and the lip strap and has a conductor extending along a side of the trench and along a portion of the control device conductive region. In addition, the device can have a collar insulator along a top portion of the trench, wherein the lip strap includes a conductor extending from a top of the collar to a top of the trench. The lip strap can also extend along a surface of the device adjacent the trench and perpendicular to the trench. A node dielectric, lining the trench where the lip strap surrounds an upper portion of the node dielectric, is adjacent the top portion of the trench and can have a trench top oxide where the lip strap extends into the trench top oxide and forms an inverted U-shaped structure. Further, the lip strap can include a conductor extending along two perpendicular portions of a top corner of the trench.
摘要:
A method and structure for a dynamic random access memory device comprising a storage trench, a storage conductor within the storage trench, a lip strap connected to the storage conductor, and a control device electrically connected to the storage conductor through the lip strap. The trench contains a corner adjacent the control device and the lip strap and has a conductor surrounding the corner. The control device has a control device conductive region adjacent the trench and the lip strap and has a conductor extending along a side of the trench and along a portion of the control device conductive region. In addition, the device can have a collar insulator along a top portion of the trench, wherein the lip strap includes a conductor extending from a top of the collar to a top of the trench. The lip strap can also extend along a surface of the device adjacent the trench and perpendicular to the trench. A node dielectric, lining the trench where the lip strap surrounds an upper portion of the node dielectric, is adjacent the top portion of the trench and can have a trench top oxide where the lip strap extends into the trench top oxide and forms an inverted U-shaped structure. Further, the lip strap can include a conductor extending along two perpendicular portions of a top corner of the trench.
摘要:
A process for producing very high-density embedded DRAM/very high-performance logic structures comprising fabricating vertical MOSFET DRAM cells with salicided source/drain and gate conductor dual workfunction MOSFETs in the supports.
摘要:
A structure and process for fabricating embedded vertical DRAM cells includes fabricating vertical MOSFET DRAM cells with silicided polysilicon layers in the array regions, the landing pad and/or interconnect structures, the support source and drain regions and/or the gate stack. The process eliminates the need for a M0 metallization layer.