Abstract:
Systems and methods for providing energy management utilize wireless wide-area network broadcast signals and a decentralized receiver architecture to allow customers to make informed choices with regard to energy consumption and load shedding for particular appliances. A receiver assembly embedded within an appliance receives a broadcast signal, e.g., an FM subcarrier signal, including tariff data and other electrical grid data. A processor coupled with the receiver controls the appliance in accordance with the received data and in accordance with user-defined preferences. In some embodiments, a transceiver assembly is embedded in one or more appliances in a household. Each transceiver is configured to receive broadcast signals regarding grid data, and to communicate with other appliances and/or a usage meter over a wireless personal area network. Meter data from one or more households may be aggregated and uplinked back to the energy provider or other entities.
Abstract:
Systems and methods for providing energy management utilize wireless wide-area network broadcast signals and a decentralized receiver architecture to allow customers to make informed choices with regard to energy consumption and load shedding for particular appliances. A receiver assembly embedded within an appliance receives a broadcast signal, e.g., an FM subcarrier signal, including tariff data and other electrical grid data. A processor coupled with the receiver controls the appliance in accordance with the received data and in accordance with user-defined preferences. In some embodiments, a transceiver assembly is embedded in one or more appliances in a household. Each transceiver is configured to receive broadcast signals regarding grid data, and to communicate with other appliances and/or a usage meter over a wireless personal area network. Meter data from one or more households may be aggregated and uplinked back to the energy provider or other entities.
Abstract:
An apparatus comprising a message outputting device, an FM radio receiver, where the FM radio receiver is configured to obtain utility operator data provided by an FM subcarrier channel, and a processor in electrical communication with the FM radio receiver and the message outputting device is provided. The processor is configured to process the utility operator data and communicate a message in the utility operator data via the message outputting device. In some instances, the apparatus further comprises an input interface in electrical communication with the processor for receiving instructions from a user on whether to alter usage of the apparatus after the message in the utility operator data has been displayed via the message outputting device.
Abstract:
A customer relationship management (CRM) method using IBOC-radio signals is provided. A message in the radio signal is parsed to obtain a key. The key is compared to a plurality of stored keys. When the received key matches a stored key, a data structure associated with the message is outputted. A device comprising a lookup table with a plurality of stored keys, a tuner unit that receives a CRM in an IBOC signal, and a controller in electrical communication with the lookup table and tuner is provided. The controller comprises (i) instructions for comparing a key in the CRM to one or more stored keys in the plurality of stored keys and (ii) instructions for permitting the display of a display text associated with the received key when there is a match between the received key and a key in the plurality of stored keys.
Abstract:
Methods, radios, components thereof, and other devices for localizing a geographic position of a radio receiver are provided. A current radio signature is obtained. The current radio signature comprises a plurality of measured signal qualities that collectively represent a frequency spectrum. Each measured signal quality in the plurality of measured signal qualities corresponds to a portion of the frequency spectrum. The current radio signature is compared with a plurality of reference radio signatures. Each reference radio signature in the plurality of reference radio signatures is associated with a global position. When the comparing identifies a unique match between the current radio signature and a reference radio signature in the plurality of reference radio signatures, the radio receiver is deemed to be localized to the global position associated with the reference radio signature.
Abstract:
A method is provided that comprises tuning a radio system to a frequency band that contains a locally-broadcast terrestrial radio signal. The locally-broadcast terrestrial radio signal comprising a main signal component and a side data component is thereby received. In response to receiving the locally-broadcast terrestrial radio signal a determination is made as to a permissible time for processing the side data component using a time slot schedule. The side data component is processed at the permissible time. A message corresponding to the side data component is outputted to an output device. In some instances, the side data component includes the message. In other instances, the method further includes searching a message lookup list using a code included in the side data component. When a stored code is found that matches the code, the message corresponding to the matching stored code is outputted.
Abstract:
A method is provided that comprises tuning a radio system to a frequency band that contains a locally-broadcast terrestrial radio signal. The locally-broadcast terrestrial radio signal comprising a main signal component and a side data component is thereby received. In response to receiving the locally-broadcast terrestrial radio signal a determination is made as to a permissible time for processing the side data component using a time slot schedule. The side data component is processed at the permissible time. A message corresponding to the side data component is outputted to an output device. In some instances, the side data component includes the message. In other instances, the method further includes searching a message lookup list using a code included in the side data component. When a stored code is found that matches the code, the message corresponding to the matching stored code is outputted.
Abstract:
Systems and methods for providing energy management utilize wireless wide-area network broadcast signals and a decentralized receiver architecture to allow customers to make informed choices with regard to energy consumption and load shedding for particular appliances. A receiver assembly embedded within an appliance receives a broadcast signal, e.g., an FM subcarrier signal, including tariff data and other electrical grid data. A processor coupled with the receiver controls the appliance in accordance with the received data and in accordance with user-defined preferences. In some embodiments, a transceiver assembly is embedded in one or more appliances in a household. Each transceiver is configured to receive broadcast signals regarding grid data, and to communicate with other appliances and/or a usage meter over a wireless personal area network. Meter data from one of more households may be aggregated and uplinked back to the energy provider or other entities.
Abstract:
A receiver assembly for managing an appliance comprises a receiver that receives a first datacast comprising utility information, a processor that controls the appliance based on the utility information, a display that notifies a user of the utility information, and an input interface that receives instructions from the user on whether to alter appliance usage based on the utility information. When an instruction is received by the input interface to alter usage of the appliance based on the utility information, the appliance is regulated by the utility information in the first datacast and subsequent datacasts until an override instruction occurs. When an override instruction is received, the appliance is not regulated by the utility information in the first datacast and subsequent datacasts until an instruction is received by the input interface from the user to alter usage of the appliance as a function of the utility information.
Abstract:
Systems and methods for providing energy management utilize wireless wide-area network broadcast signals and a decentralized receiver architecture to allow customers to make informed choices with regard to energy consumption and load shedding for particular appliances. A receiver assembly embedded within an appliance receives a broadcast signal, e.g., an FM subcarrier signal, including tariff data and other electrical grid data. A processor coupled with the receiver controls the appliance in accordance with the received data and in accordance with user-defined preferences. In some embodiments, a transceiver assembly is embedded in one or more appliances in a household. Each transceiver is configured to receive broadcast signals regarding grid data, and to communicate with other appliances and/or a usage meter over a wireless personal area network. Meter data from one of more households may be aggregated and uplinked back to the energy provider or other entities.