Abstract:
A handheld communication device is used to capture video streams and generate a multiplexed video stream. The handheld communication device has at least two cameras facing in two opposite directions. The handheld communication device receives a first video stream and a second video stream simultaneously from the two cameras. The handheld communication device detects a speech activity of a person captured in the video streams. The speech activity may be detected from direction of sound or lip movement of the person. Based on the detection, the handheld communication device automatically switches between the first video stream and the second video stream to generate a multiplexed video stream. The multiplexed video stream interleaves segments of the first video stream and segments of the second video stream. Other embodiments are also described and claimed.
Abstract:
A system detects the repositioning of an earphone that is worn by a user, and changes an operation mode of a host coupled to the earphone. Within the earphone is a pressure transducer that detects a pressure change caused by the repositioning of the earphone. A signaling mechanism sends a repositioning detection signal to the host in response to a signal from the pressure transducer indicating the detection of the pressure change.
Abstract:
A device includes a microphone array fixed to the device. A signal processor produces an audio output using audio beamforming with input from the microphone array. The signal processor aims the beamforming in a selected direction. An orientation sensor—such as a compass, an accelerometer, or an inertial sensor—is coupled to the signal processor. The orientation sensor detects a change in the orientation of the microphone array and provides an orientation signal to the signal processor for adjusting the aim of the beamforming to maintain the selected direction. The device may include a camera that captures an image. An image processor may identify an audio source in the image and provide a signal adjusting the selected direction to follow the audio source. The image processor may receive the orientation signal and adjust the image for changes in the orientation of the camera before tracking movement of the audio source.
Abstract:
The invention relates to an apparatus for preventing infection by malicious code, comprising: a database in which files installed in an agent system, DNA values for each part of the files, and index information for indicating whether each file is normal or malicious are stored; a calculation unit which calculates a DNA value for a part of a file for which an execution is requested in the agent system; and a file inspection unit which searches the database to extract, in a group, files having the DNA value calculated by the calculation unit, inspects whether an object file is normal or malicious on the basis of the index information on the files extracted in a group, and allows the execution of the object file or makes a request for the calculation of DNA values of other parts which selectively include one part of the object file.
Abstract:
An originating communications device is configured to transmit a text message to a recipient mobile device when the originating device determines that the recipient device has failed to connect with a call that was initiated by the originating device. The text message is designed to indicate that the recipient device has failed to connect with the call; in addition or as an alternative, the text message includes a code that indicates to the recipient device that it is potentially in a poor RF coverage area. The recipient mobile device, upon receiving and displaying the text message, may determine that it is indeed in an area with poor coverage and will in response store its current geographic location as a poor coverage area. Other embodiments are also described and claimed.
Abstract:
An audio player includes an audio headset having two earpieces. A playback circuit provides one of a stereophonic program and a monaural program to the audio headset. The monaural program may be created by mixing channels of the stereophonic program. A mode control is coupled to the playback circuit and to the audio headset. The mode control detects when at least one of the two earpieces is not adjacent a listener's ear and causes the playback circuit to deliver the monaural program to the audio headset.
Abstract:
A removable case for a mobile communications device includes an opening that aligns with a microphone port that is built into the device. The case includes a windscreen that is sealed across the opening of the case. The windscreen is designed to reduce wind noise, air blasts, vocal plosives, and other noise. Other embodiments are also described and claimed.
Abstract:
A device includes a microphone array fixed to the device. A signal processor produces an audio output using audio beamforming with input from the microphone array. The signal processor aims the beamforming in a selected direction. An orientation sensor—such as a compass, an accelerometer, or an inertial sensor—is coupled to the signal processor. The orientation sensor detects a change in the orientation of the microphone array and provides an orientation signal to the signal processor for adjusting the aim of the beamforming to maintain the selected direction. The device may include a camera that captures an image. An image processor may identify an audio source in the image and provide a signal adjusting the selected direction to follow the audio source. The image processor may receive the orientation signal and adjust the image for changes in the orientation of the camera before tracking movement of the audio source.
Abstract:
A device to provide an audio output includes a microphone array, a signal processor, and a graphic user interface (GUI). The signal processor is coupled to the microphone array to perform audio beamforming with input from the microphone array. The GUI is coupled to the signal processor to display a plurality of audio sources, to receive a selection of at least one of the plurality of audio sources from a user, and to provide the selection to the signal processor for aiming the audio beamforming toward the selected audio source. The selection may be made by touching the display. The device may further include a camera and the GUI may display an image received from the camera as the plurality of audio sources. The camera may provide a moving video image and the signal processor may provide a synchronized audio signal aimed at the selected audio source.
Abstract:
A device includes a microphone array fixed to the device. A signal processor produces an audio output using audio beamforming with input from the microphone array. The signal processor aims the beamforming in a selected direction. An orientation sensor—such as a compass, an accelerometer, or an inertial sensor—is coupled to the signal processor. The orientation sensor detects a change in the orientation of the microphone array and provides an orientation signal to the signal processor for adjusting the aim of the beamforming to maintain the selected direction. The device may include a camera that captures an image. An image processor may identify an audio source in the image and provide a signal adjusting the selected direction to follow the audio source. The image processor may receive the orientation signal and adjust the image for changes in the orientation of the camera before tracking movement of the audio source.