摘要:
Carbon nanotubes (CNTs) are mixed in an aqueous buffer solution that includes a buffer material having a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group. The resulting solution includes the CNTs dispersed therein. Metal-core ferritins are then mixed into the resulting solution where at least a portion of the ferritins are coupled to the CNTs.
摘要:
Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.
摘要:
Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.
摘要:
A thin-film electrode for a bio-nanobattery is produced by consecutively depositing arrays of a ferritin protein on a substrate, employing a spin self-assembly procedure. By this procedure, a first ferritin layer is first formed on the substrate, followed by building a second, oppositely-charged ferritin layer on the top of the first ferritin layer to form a bilayer structure. Oppositely-charged ferritin layers are subsequently deposited on top of each other until a desired number of bilayer structures is produced. An ordered, uniform, stable and robust, thin-film electrode material of enhanced packing density is presented, which provides optimal charge density for the bio-nanobattery.
摘要:
Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.
摘要:
Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.
摘要:
Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.
摘要:
Effective radiation shielding is required to protect crew and equipment in various fields including aerospace, defense, medicine and power generation. Light elements and in particular hydrogen are most effective at shielding against high-energy particles including galactic cosmic rays, solar energetic particles and fast neutrons. However, pure hydrogen is highly flammable, has a low neutron absorption cross-section, and cannot be made into structural components. Nanocomposites containing the light elements Boron, Nitrogen, Carbon and Hydrogen as well dispersed boron nano-particles, boron nitride nanotubes (BNNTs) and boron nitride nano-platelets, in a matrix, provide effective radiation shielding materials in various functional forms. Boron and nitrogen have large neutron absorption cross-sections and wide absorption spectra. The incorporation of boron and nitrogen containing nanomaterials into hydrogen containing matrices provides composites that can effectively shield against neutrons and a wide range of radiation species of all energies without fragmentation and the generation of harmful secondary particles.
摘要:
A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.
摘要:
A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.