摘要:
Mechanisms are provided for characterizing long range variability in integrated circuit manufacturing. A model derivation component tests one or more density pattern samples, which are a fabricated integrated circuits having predetermined pattern densities and careful placement of current-voltage (I-V) sensors. The model derivation component generates one or more empirical models to establish range of influence of long range variability effects in the density pattern sample. A variability analysis component receives an integrated circuit design and, using the one or more empirical models, analyzes the integrated circuit design to isolate possible long range variability effects in the integrated circuit design.
摘要:
Mechanisms are provided for characterizing long range variability in integrated circuit manufacturing. A model derivation component tests one or more density pattern samples, which are a fabricated integrated circuits having predetermined pattern densities and careful placement of current-voltage (I-V) sensors. The model derivation component generates one or more empirical models to establish range of influence of long range variability effects in the density pattern sample. A variability analysis component receives an integrated circuit design and, using the one or more empirical models, analyzes the integrated circuit design to isolate possible long range variability effects in the integrated circuit design.
摘要:
A method and service of balancing delay in a circuit design begins with nodes that are to be connected together by a wiring design, or by being supplied with an initial wiring design that is to be altered. The wiring design will have many wiring paths, such as a first wiring path, a second wiring path, etc. Two or more of the wiring paths are designed to have matching timing, such that the time needed for a signal to travel along the first wiring path is about the same time needed for a signal to travel along the second wiring path, the third path, etc. The method/service designs one or all of the wiring paths to make the paths traverse wire segments of about the same length and orientation, within each wiring level that the first wiring path and the second wiring path traverse. Also, this process makes the first wiring path and the second wiring path traverse the wire segments in the same order, within each wiring level that the first wiring path and the second wiring path traverse.
摘要:
A method and service of balancing delay in a circuit design begins with nodes that are to be connected together by a wiring design, or by being supplied with an initial wiring design that is to be altered. The wiring design will have many wiring paths, such as a first wiring path, a second wiring path, etc. Two or more of the wiring paths are designed to have matching timing, such that the time needed for a signal to travel along the first wiring path is about the same time needed for a signal to travel along the second wiring path, the third path, etc. The method/service designs one or all of the wiring paths to make the paths traverse wire segments of about the same length and orientation, within each wiring level that the first wiring path and the second wiring path traverse. Also, this process makes the first wiring path and the second wiring path traverse the wire segments in the same order, within each wiring level that the first wiring path and the second wiring path traverse.
摘要:
Systems and methods are provided for analyzing the timing of circuits, including integrated circuits, by taking into account the location of cells or elements in the paths or logic cones of the circuit. In one embodiment, a bounding region may be defined around cells or elements of interest, and the size of the bounding region may be used to calculate a timing slack variation factor. The size of the bounding region may be adjusted to account for variability in timing delays. In other embodiments, centroids may be calculated using either the location or the delay-weighted location of elements or cells within the path or cone and the centroids used to calculate timing slack variation factor. The timing slack variation factors are used to calculate a new timing slack for the path or logic cone of the circuit.
摘要:
Methods for analyzing the timing in integrated circuits and for reducing the pessimism in timing slack calculations in static timing analysis (STA). The methods involve grouping and canceling the delay contributions of elements having similar delays in early and late circuit paths. An adjusted timing slack is calculated using the delay contributions of elements having dissimilar delays. In some embodiments, the delay contributions of elements having dissimilar delays are root sum squared. Embodiments of the invention provide methods for reducing the pessimism due to both cell-based and wire-dependent delays. The delays considered in embodiments of the invention may include delays due to the location of elements in a path.
摘要:
A method and service of balancing delay in a circuit design begins with nodes that are to be connected together by a wiring design, or by being supplied with an initial wiring design that is to be altered. The wiring design will have many wiring paths, such as a first wiring path, a second wiring path, etc. Two or more of the wiring paths are designed to have matching timing, such that the time needed for a signal to travel along the first wiring path is about the same time needed for a signal to travel along the second wiring path, the third path, etc. The method/service designs one or all of the wiring paths to make the paths traverse wire segments of about the same length and orientation, within each wiring level that the first wiring path and the second wiring path traverse. Also, this process makes the first wiring path and the second wiring path traverse the wire segments in the same order, within each wiring level that the first wiring path and the second wiring path traverse.
摘要:
A method, system and program product are disclosed for improving an IC design that prioritize failure coefficients of slacks that lead to correction according to their probability of failure. With an identified set of independent parameters, a sensitivity analysis is performed on each parameter by noting the difference in timing, typically on endpoint slacks, when the parameter is varied. This step is repeated for every independent parameter. A failure coefficient is then calculated from the reference slack and the sensitivity of slack for each of the timing endpoints and a determination is made as to whether at least one timing endpoint fails a threshold test. Failing timing endpoints are then prioritized for modification according to their failure coefficients. The total number of runs required is one run that is used as a reference run, plus one additional run for each parameter.
摘要:
Methods for analyzing the timing in integrated circuits and for reducing the pessimism in timing slack calculations in static timing analysis (STA). The methods involve grouping and canceling the delay contributions of elements having similar delays in early and late circuit paths. An adjusted timing slack is calculated using the delay contributions of elements having dissimilar delays. In some embodiments, the delay contributions of elements having dissimilar delays are root sum squared. Embodiments of the invention provide methods for reducing the pessimism due to both cell-based and wire-dependent delays. The delays considered in embodiments of the invention may include delays due to the location of elements in a path.
摘要:
A method and service of balancing delay in a circuit design begins with nodes that are to be connected together by a wiring design, or by being supplied with an initial wiring design that is to be altered. The wiring design will have many wiring paths, such as a first wiring path, a second wiring path, etc. Two or more of the wiring paths are designed to have matching timing, such that the time needed for a signal to travel along the first wiring path is about the same time needed for a signal to travel along the second wiring path, the third path, etc. The method/service designs one or all of the wiring paths to make the paths traverse wire segments of about the same length and orientation, within each wiring level that the first wiring path and the second wiring path traverse. Also, this process makes the first wiring path and the second wiring path traverse the wire segments in the same order, within each wiring level that the first wiring path and the second wiring path traverse.