摘要:
Solutions for integrating manufacturing feedback into an integrated circuit design are disclosed. In one embodiment, a computer-implemented method is disclosed including: defining an acceptable yield requirement for a first integrated circuit product; obtaining manufacturing data about the first integrated circuit product; performing a regression analysis on data representing paths in the first integrated circuit product to define a plurality of parameter settings based upon the acceptable yield requirement and the manufacturing data; determining a projection corner associated with the parameter settings for satisfying the acceptable yield requirement; and modifying a design of a second integrated circuit product based upon the projection corner and the plurality of parameter settings.
摘要:
A plurality of digital circuits are manufactured from an identical circuit design. A power controller is operatively connected to the digital circuits, and a non-transitory storage medium is operatively connected to the power controller. The digital circuits are classified into different voltage bins, and each of the voltage bins has a current leakage limit. Each of the digital circuits has been previously tested to operate within a corresponding current leakage limit of a corresponding voltage bin into which each of the digital circuits has been classified. The non-transitory storage medium stores boundaries of the voltage bins as speed-binning test data. The power controller controls power-supply signals applied differently for each of the digital circuits based on which bin each of the digital circuit has been classified and the speed-binning test data.
摘要:
A method of optimizing power and timing for an integrated circuit (IC) chip, identifies a plurality of valid temperature and voltage combinations that allow integrated circuit chips produced according to the integrated circuit chip design to operate within average power consumption goals and timing delay goals. Such a method selects temperature cut points from the valid temperature and voltage combinations for each of the integrated circuit chips, calculates a power consumption amount of each of the temperature cut points, and adjusts the temperature cut points based on the power consumption amount until the temperature cut points achieve the average power consumption goals. Next, this method tests each of the integrated circuit chips, and records the temperature cut points in the memory of the integrated circuit chips.
摘要:
Aspects of the present invention provide solutions for projecting slack in an integrated circuit. A statistical static timing analysis (SSTA) is computed to get a set of Gaussian distributions over a plurality of variation sources in the integrated circuit. Based on the Gaussian distributions, a truncated subset and a remainder subset of the Gaussian distributions are identified. Then data factors that represent a ratio between the remainder subset and the truncated subset are obtained. These data factors are applied to the SSTA to root sum square (RSS) project the slack for the integrated circuit that takes into account the absence of the truncated subset.
摘要:
Solutions for integrating manufacturing feedback into an integrated circuit design are disclosed. In one embodiment, a computer-implemented method is disclosed including: defining an acceptable yield requirement for a first integrated circuit product; obtaining manufacturing data about the first integrated circuit product; performing a regression analysis on data representing paths in the first integrated circuit product to define a plurality of parameter settings based upon the acceptable yield requirement and the manufacturing data; determining a projection corner associated with the parameter settings for satisfying the acceptable yield requirement; and modifying a design of a second integrated circuit product based upon the projection corner and the plurality of parameter settings.
摘要:
A system and method for the adjustment of history based delay variation during static timing analysis of an integrated circuit design. The method may include obtaining information through sources of variability of history based components of delay variability, and a relationship between the sources of variability and one or more bounded device histories. Then, inputting history bounds for at least one signal of the integrated circuit design, and computing and propagating history bounds through at least one first segment of the integrated circuit design to at least one signal of the integrated circuit design. Further, the method may include evaluating from at least one of the propagated history bounds, device history bounds for at least one second segment of the integrated circuit design, and based on the evaluated device history bounds, adjusting at least one of a value of the history based delay variability and propagation of timing.
摘要:
Methods for identifying failing timing requirements in a digital design. The method includes identifying at least one timing test in the digital design that has a passing slack in a base process corner and a failing slack in a different process corner. The method further includes computing a sensitivity of the failing slack to each of a plurality of variables and comparing each sensitivity to a respective sensitivity threshold. If the sensitivity of at least one of the variables is greater than the respective sensitivity threshold, then the at least one timing test is considered to fail.
摘要:
A method of evaluating an integrated circuit design selects manufacturing parameters of interest which are outside of manufacturing specification limits. Then, the method runs timing tests on the integrated circuit design and successively evaluates the timing test results in an iterative process that considers the timing performance sensitivity to the selected manufacturing parameters of interest. The design is made more robust to each parameter out of manufacturing range.
摘要:
Methods, systems and program products for evaluating an IC chip are disclosed. In one embodiment, the method includes running a statistical static timing analysis (SSTA) of a full IC chip design; creating at-functional-speed test (AFST) robust paths for an IC chip, the created robust paths representing a non-comprehensive list of AFST robust paths for the IC chip; and re-running the SSTA with the SSTA delay model setup based on the created robust paths. A process coverage is calculated for evaluation from the SSTA runnings; and a particular IC chip is evaluated based on the process coverage.
摘要:
Methods, systems and computer program products for analyzing a timing design of an integrated circuit are disclosed. According to an embodiment, a method for analyzing a timing design of an integrated circuit comprises: providing an initial static timing analysis of the integrated circuit; selecting a static timing test with respect to a static timing test point based on the initial static timing analysis; selecting a timing path leading to the static timing test point for the static timing test; determining an integrated slack path variability for the timing path based on a joint probability distribution of at least one statistically independent parameter; and analyzing the timing design based on the integrated slack path variability.