摘要:
The power of DC electrical sources is combined onto a DC buss, such that each source behaves independently from any other source attached to the buss. In one embodiment, a converter module is attached to each of a plurality of solar photovoltaic panels and its output is attached in a parallel manner to a common buss that forms the input to a DC AC inverter. The converter module includes a Maximum Power Point Tracking component that matches the output impedance of the panels to the input impedance of the converter module. The converter also includes a communication component that provides parametric data and identification to a central inverter. Data generated by each converter module is transmitted over the power line or by wireless means and is collected at the inverter and forwarded to a data collection and reporting system.
摘要:
The power of DC electrical sources is combined onto a DC buss, such that each source behaves independently from any other source attached to the buss. In one embodiment, a converter module is attached to each of a plurality of solar photovoltaic panels and its output is attached in a parallel manner to a common buss that forms the input to a DC AC inverter. The converter module includes a Maximum Power Point Tracking component that matches the output impedance of the panels to the input impedance of the converter module. The converter also includes a communication component that provides parametric data and identification to a central inverter. Data generated by each converter module is transmitted over the power line or by wireless means and is collected at the inverter and forwarded to a data collection and reporting system.
摘要:
The power of DC electrical sources is combined onto a DC buss, such that each source behaves independently from any other source attached to the buss. In one embodiment, a converter module is attached to each of a plurality of solar photovoltaic panels and its output is attached in a parallel manner to a common buss that forms the input to a DC AC inverter. The converter module includes a Maximum Power Point Tracking component that matches the output impedance of the panels to the input impedance of the converter module. The converter also includes a communication component that provides parametric data and identification to a central inverter. Data generated by each converter module is transmitted over the power line or by wireless means and is collected at the inverter and forwarded to a data collection and reporting system.
摘要:
DC to DC converters are connected in parallel to a DC buss that is input to a DC to AC inverter module. Each of the DC to DC converters receives input from one or more DC electrical sources. The inverter module typically comprises a DC to AC power stage that is connectable to an AC buss, and a filter connected between the DC buss and the DC to AC power stage. The filter may comprise one or more capacitors, wherein the capacitors may be chosen based upon the voltage of the DC buss. While the DC buss may have a voltage ripple associated therewith, the DC electrical sources are protected from the DC voltage ripple by their respective converter modules.
摘要:
The power of DC electrical sources is combined onto a DC buss, such that each source behaves independently from any other source attached to the buss. In one embodiment, a converter module is attached to each of a plurality of solar photovoltaic panels and its output is attached in a parallel manner to a common buss that forms the input to a DC AC inverter. The converter module includes a Maximum Power Point Tracking component that matches the output impedance of the panels to the input impedance of the converter module. The converter also includes a communication component that provides parametric data and identification to a central inverter. Data generated by each converter module is transmitted over the power line or by wireless means and is collected at the inverter and forwarded to a data collection and reporting system.
摘要:
A low cost PCB carrier and connectivity system comprises a unique technique for securing a PCB within an enclosure, while providing electrical interconnection between wire cabling and/or other PCBs, without the use of screws.