Abstract:
Systems for identifying potentially erroneous and/or erased data are provided. Systems have a bit detector, an accumulator, and a data reconstruction processor. The bit detector assigns values to bits read in a data signal. The bit detector illustratively assigns multiple values to each of the bits. The accumulator accumulates a count of the multiple values assigned by the bit detector for each of the bits. The accumulator associates each bit with a particular value based at least in part on its accumulated count. The data reconstruction processor determines for each of the bits a confidence level of the particular value associated to it. The data reconstruction process sets flags for a portion of the bits. The flags identify the portion of the bits as possible erased or erroneous data. The flags are set based at least in part on the confidence levels of the portion of the bits.
Abstract:
A method for detecting head-disc contact is disclosed. The method comprises locating a head including a head positioning microactuator and at least one of a read transducer and a write transducer adjacent to a disc such that the head is in communication with the disc, monitoring an output signal from the head positioning microactuator of the head, and evaluating the output signal to determine if the head contacts the disc.
Abstract:
A system for enhancing the error correction capability of an error correction code (“ECC”) during error recovery operations accumulates, for respective bits, counts of the number of times the bits are detected as 1s in multiple re-reads of a data signal. The system then determines, based on the associated count, if a reconstructed bit should be considered a 1 or 0, or neither, that is, if the reconstructed bit should be considered erroneous, by comparing the count to a majority detection threshold and then to either an upper or a lower predetermined threshold that corresponds to the confidence with which the bit is reconstructed as a either a 1 or a 0. If the confidence is sufficiently low, that is, if the count falls below the upper threshold or above the lower threshold, the reconstructed bit is flagged as erroneous. After all of the bits are reconstructed, the system groups the bits into symbols to reproduce the ECC codeword, and sets erasure pointers that identify the locations of a predetermined number, s, of the symbols that are associated with the highest degree of uncertainty, that is, the largest numbers of flagged bits or, as appropriate, the largest numbers of flagged bits with the lowest confidence levels. The error correction operation then decodes the symbols in the identified locations as erasures. The system, using an (n, k) distance d Reed-Solomon ECC uses 2t=n−k redundancy symbols to correct the s erasures and up to 2 t - s 2 errors.
Abstract:
A loading dock apparatus remote control is provided. Some embodiments of the invention include a zone specific remote control for loading dock apparatus. Some optional embodiments include a selector switch to select which apparatus the single set of controls will control. Other optional embodiments automatically select the apparatus to be controlled by the single set of controls. A method of operating loading dock apparatus using a remote control is also provided.
Abstract:
A dock leveler for bridging the gap between a loading dock and the bed of a vehicle parked at the loading dock. The dock leveler is configured for installation on the top of the dock and is designed to rotate from a vertically-stored raised position to at least one lowered, operative position. In some embodiments, the dock leveler can be lowered either for normal operation so that the deck assembly rests on the bed of the vehicle or it can be lowered to accommodate an end-loading condition.
Abstract:
A dock leveler having a deck-assembly, a first hydraulic cylinder to power said deck assembly to a raised position, lip mounted to said deck assembly, and a second hydraulic cylinder for powering said lip into an extended position. An hydraulic power circuit is coupled to the first and second hydraulic cylinders to control movement of said deck and lip. The hydraulic power circuit includes a pump to deliver fluid under pressure, a first valve operatively coupled to the pump to control fluid flow to the first hydraulic cylinder. A second valve is operatively coupled to the second hydraulic cylinder. An adjustable relief valve is coupled to the second valve to prevent a reduction of fluid pressure to the second hydraulic cylinder after the pump has supplied fluid under pressure through the second valve to extend the lip.
Abstract:
A barrier for a loading dock having an opening in a wall having a dock leveler positioned in a floor of the loading dock adjacent said opening. The dock leveler has a horizontal position where traffic may cross to adjacent areas of the loading dock. A support is located along a side of the dock leveler. A deformable barrier arm is pivotedly connected to the support by a mounting for movement between a horizontal blocking position and a raised vertical position exposing the opening. The mounting has a pivotal connection to the support to permit the deformable barrier arm to move in a vertical arc for raising and lowering the arm and a loose connection to the barrier arm to permit relative motion between the barrier arm and the mounting upon the application of a horizontal load to the barrier arm.
Abstract:
A hold-down device for a mechanical dock leveler which is spring loaded so that when the hold-down device is released the deck will rise and the lip will extend. When the deck is walked down, the hold-down device maintains the deck in contact with the truck bed. This is accomplished by means of the interaction and geometry between a brake actuating arm and a brake release arm and the associated pins. As the dock leveler is lowered, the perpendicular distance from an anchor pin to the center line of a slot in the brake actuating arm increases. This causes the brake actuating arm to move upward increasing tension on the brake band. The brake release arm moves and increases the braking force. As the dock leveler is raised the braking force is reduced. The leveler includes a two-stage safety leg with a guide bar attached to the safety leg stop. The guide bar limits free travel of the safety leg. The guide bar engages projecting tabs from each stage of the safety leg to require upward or free movement above a respective engagement position before the safety leg can move forward and re-engage the stop.
Abstract:
A brake mechanism for a vertically storing dock leveler mounted on a carriage for lateral movement on rails relative to a dock surface. The brake is automatically actuated by means of an arm that bears against the leveler. When the leveler is lowered the arm rotates to urge a brake member into engagement with a rail thus preventing lateral movement of the carriage and leveler.
Abstract:
A dock leveler having a rigid flat deck and a rigid hinge pin coupling the leveler to a loading dock or leveler frame element. The deck is supported by a series of spaced box beams, each one split longitudinally to provide the necessary torsional flexibility to allow a rigid hinge pin. The use of a box beam geometry still serves to provide the required load support for the deck.