摘要:
The present invention is an external defibrillator which controls and manages the formation of defibrillation waveforms. The waveforms are dynamically adjusted and created to be consistent with a myocardial cell response waveform. Dynamic tilt calculations based on time slices and corresponding functions based on best-fit models are used to generate the waveforms. The waveforms are dynamically adjusted to compensate for changes in resistance due to changes in the voltage during delivery of the waveform. The waveforms include a first and a second phase and are formed with minimal delay therebetween.
摘要:
A circuit detectable arrangement of a plurality of medical electrodes is provided with each electrode having an electrically nonconductive backing layer, a layer of electrically conductive adhesive disposed on the backing layer and a lead wire extending therefrom and electrically connected with the conductive adhesive. More specifically, a first electrode is disposed on an electrically nonconductive liner, a second electrode is disposed on an electrically nonconductive liner, and an electrical connector is provided between the first and second electrodes for electrically completing a circuit connecting the lead wire of the first electrode to the lead wire of the second electrode. Preferably, the backing layers of the first and second electrodes each include a conductor portion, and the electrical connector is connected between the conductor portion of the backing layer of the first electrode and the conductor portion of the backing layer of the second electrode. The electrical connector preferably comprises a strip of flexible and electrically conductive material and may include a nonconductive tear resistant strip. Utilizing the electrode packaging above, the present invention monitors the state of the AED and the stage of a rescue. In particular, at least five stages of a rescue are monitored. These include: 1) rescue initiated; 2) preparing victim; 3) applying electrodes; 4) AED in use; and 5) rescue completed.
摘要:
Defibrillator electrodes having an identification element and a circuit which indicates to an AED the weight range of the patient being rescued. When the AED detects the presence of pediatric electrodes, it may select a different set of voice prompts that are specifically suited to a pediatric patient and/or it may select a pediatric dosage of electricity for the therapeutic shock.
摘要:
An apparatus and method for determining an optimal transchest external defibrillation waveform that provides for variable energy in the first or second phase of a biphasic waveform that, when applied through a plurality of electrodes positioned on a patient's torso, will produce a desired response in the patient's cardiac cell membranes. The method includes the steps of providing a quantitative model of a defibrillator circuit for producing external defibrillation waveforms, the quantitative model of a patient includes a chest component, a heart component, a cell membrane component and a quantitative description of the desired cardiac membrane response function. Finally, a quantitative description of a transchest external defibrillation waveform that will produce the desired cardiac membrane response function is computed. The computation is made as a function of the desired cardiac membrane response function, the patient model and the defibrillator circuit model.
摘要:
A method for determining an optimal transchest external defibrillation waveform which, when applied through a plurality of electrodes positioned on a patient's torso will produce a desired response in the patient's cardiac cell membranes. The method includes the steps of providing a quantitative model of a defibrillator circuit for producing external defibrillation waveforms, the quantitative model of a patient includes a chest component, a heart component, a cell membrane component and a quantitative description of the desired cardiac membrane response function. Finally, a quantitative description of a transchest external defibrillation waveform that will produce the desired cardiac membrane response function is computed. The computation is made as a function of the desired cardiac membrane response function, the patient model and the defibrillator circuit model.
摘要:
In an automatic external defibrillator (AED) having a ventricular fibrillation detector, the ventricular fibrillation detector may generally be defined as a filter containing both an adaptive non-linear section and a linear section. The non-linear section is preferably a complex-domain neural network that can be trained to differentiate between various rhythm patterns and produce linear data for input to the linear section. The linear section is preferably an ongoing, continuous operation based on a sliding window of a predetermined time period, e.g., a tapped time-delay filter. In combination the non-linear section and linear section of the filter operate to detect and extract artifacts from a patient's ECG signal in a substantially accurate fashion so that the determination to deliver a defibrillation pulse may be accurately made.
摘要:
The present invention discloses a method and device in which an external defibrillator is integrated with an algorithm implemented in a programmable microprocessor which controls and manages the formation of defibrillation waveforms. The waveforms are dynamically adjusted and created to be consistent with a myocardial cell response waveform. Dynamic tilt calculations based on time slices and corresponding fit functions based on best-fit models are used to generate the waveforms. The waveforms include a first and a second phase and are formed with minimal delay therebetween.
摘要:
A method of generating and applying a defibrillation shock of the present invention includes first applying a defibrillation shock pulse to a patient with an initial predetermined amount of energy not based on a patient-dependent electrical parameter, and while monitoring a patient-dependent electrical parameter. Next, patient transthoracic impedance is determined based on the patient-dependent electrical parameter. Finally, a subsequent predetermined amount of energy is applied to the patient based on the patient transthoracic impedance calculated above and while monitoring the patient-dependent electrical parameter. Subsequent defibrillation shock pulses are applied using a patient impedance based on the patient-dependent electrical parameter observed during the most recent defibrillation shock. In this manner, an optimal combination of charged voltage and the maximum allowed current (under the AAMI defibrillation waveform standard) is applied for a patient's given transthoracic impedance.
摘要:
An apparatus and method for determining an optimal transchest external defibrillation waveform that provides for variable energy in the first or second phase of a biphasic waveform that, when applied through a plurality of electrodes positioned on a patient's torso, will produce a desired response in the patient's cardiac cell membranes. The method includes the steps of providing a quantitative model of a defibrillator circuit for producing external defibrillation waveforms, the quantitative model of a patient includes a chest component, a heart component, a cell membrane component and a quantitative description of the desired cardiac membrane response function. Finally, a quantitative description of a transchest external defibrillation waveform that will produce the desired cardiac membrane response function is computed. The computation is made as a function of the desired cardiac membrane response function, the patient model and the defibrillator circuit model.
摘要:
An energy delivery system for use with an automatic external defibrillator (AED), the AED having a case containing a plurality of AED components, a battery electrically coupled to a control system, the control system communicatively coupled to a charge system, the charge system for generating a stored quantity of energy responsive to a communication from the control system, the control system selectively commanding a discharge of the stored energy to an electrical connector, the energy delivery system includes three electrodes, each electrode for making electrical contact with a skin surface of a patient, each electrode being in electrical contact with the electrical connector for communicating the stored energy to the patient. A method of defibrillating the heart of a patient using an AED, the AED having electrical energy discharge circuitry for generating a defibrillating energy discharge to affect the heart of the patient, the heart being in a state of fibrillation, includes the steps of placing three electrodes on the person of a patient to define a desired electrical path and discharging electrical energy across the electrical path.