摘要:
Processes and systems for recovering promoter-containing compounds, for example, perrhenates, from promoter-containing catalyst substrates, for example, substrates containing precious metals, such as silver, are disclosed. The processes include contacting the substrates with a first solution adapted to remove at least some of the catalyst promoter from the substrates, for example, an oxidizing agent, to produce a second solution containing catalyst promoter, passing the second solution through a porous medium adapted to capture at least some of the catalyst promoter, for example, a ion exchange resin; and passing a third solution, for example, a base solution, through the porous medium to remove at least some of the catalyst promoter from the porous medium and produce a fourth solution containing compounds having a catalyst promoter. Systems adapted to practice these processes are also disclosed.
摘要:
Processes and systems for recovering promoter-containing compounds, for example, perrhenates, from promoter-containing catalyst substrates, for example, substrates containing precious metals, such as silver, are disclosed. The processes include contacting the substrates with a first solution adapted to remove at least some of the catalyst promoter from the substrates, for example, an oxidizing agent, to produce a second solution containing catalyst promoter, passing the second solution through a porous medium adapted to capture at least some of the catalyst promoter, for example, a ion exchange resin; and passing a third solution, for example, a base solution, through the porous medium to remove at least some of the catalyst promoter from the porous medium and produce a fourth solution containing compounds having a catalyst promoter. Systems adapted to practice these processes are also disclosed.
摘要:
The present invention provides a method for purifying ruthenium sources to obtain high purity ruthenium metal and form a ruthenium metal pattern on a semiconductor substrate without the need for high temperature processing or a complex series of wet processes. A gas stream including ozone (O3) is brought into contact with a ruthenium source in one or more reaction vessels to form ruthenium tetraoxide (RuO4), a compound that is a gas at the reaction conditions. The ruthenium tetraoxide, along with unreacted ozone and the remainder of the gas stream is then fed into a collection vessel where the gaseous ruthenium tetraoxide is reduced to form a ruthenium dioxide (RuO2) layer on a semiconductor substrate. The deposited ruthenium dioxide is then reduced, preferably with hydrogen, to produce highly pure ruthenium metal that may be, in turn, patterned and dry etched using ozone as an etchant gas.
摘要翻译:本发明提供一种用于纯化钌源以获得高纯度钌金属并在半导体衬底上形成钌金属图案的方法,而不需要高温处理或复杂的一系列湿法。 使包含臭氧(O 3 3 N)的气流与一个或多个反应容器中的钌源接触以形成四氧化钌(RuO 4 S 4),其为化合物 反应条件下的气体。 然后将四氧化钌,以及未反应的臭氧和气流的其余部分进料到收集容器中,在该收集容器中,气态钌四氧化物被还原以在半导体衬底上形成二氧化钌(RuO 2 N 2)层 。 然后沉积的二氧化钌优选用氢气还原,以产生高纯度的钌金属,其可以使用臭氧作为蚀刻剂气体进行图案化和干蚀刻。
摘要:
The present invention provides a method for purifying ruthenium sources to obtain high purity ruthenium metal without the need for high temperature processing, expensive reagents, complex series of wet processes, or expensive equipment. According to the present invention, a gas stream including ozone (O3) is brought into contact with a ruthenium source, such as a commercial ruthenium metal sponge, in one or more reaction vessels. The ozone reacts with the ruthenium present in the ruthenium source to form ruthenium tetraoxide (RuO4), a compound that is a gas at the reaction conditions. The ruthenium tetraoxide, along with unreacted ozone and the remainder of the gas stream is then fed into a collection vessel where a major portion of the gaseous ruthenium tetraoxide is thermally reduced to form ruthenium dioxide (RuO2) deposits within the collection vessel. The deposited ruthenium dioxide is then reduced, preferably with hydrogen, to produce highly pure ruthenium metal that is, in turn removed from the collection vessel.