Abstract:
A wave energy converter (WEC) for converting energy contained in surface waves on a body of water to useful energy comprises two floats movable relative to one another in response to passing surface waves. Both floats comprise expandable outer envelopes which have been expanded into full and firm shape. In one process, expansion is obtained by filling the floats with fluids, for example, air and water. The fluids can be pumped into the floats, or the floats can be mechanically expanded in the presence of the fluids for self filling owing to pressure differentials. In one embodiment, a float envelope can comprise of plurality of end to end connected length sections in nested or telescoped relationship. Expansion is obtained by pulling the telescoped sections out from one and other, for example, by pumping fluids into the telescoped sections.
Abstract:
A wave energy converter system comprises two floats; a first being generally flat and heaving up and down in phase with passing surface waves on a body of water, and the second being elongated and heaving up and down out of phase with the passing waves. Preferably, the first float is annular with a central vertical opening therethrough, and the elongated float, with a weighted bottom end, extends vertically through the central opening of the first float. The two floats thus move out of phase with one another, thus providing a relatively large relative motion between the two floats giving rise to highly efficient energy conversion. Each float serves as a “ground” for the other; thus avoiding the need for anchoring the floats to the floor of the body of water.
Abstract:
The stability and power conversion efficiency of a wave energy converter (WEC) which includes a float, a spar and a power taken device (PTO) connected between the spar and the float is increased by connecting a heave plate to the spar in a very secure manner and by carefully limiting the movement between the float and spar to one direction (i.e., up-down motion). Buoyancy chambers may be attached to the WEC to facilitate its transportation and deployment. The WEC may be formed in sections and assembled at, or close to, the point of deployment.
Abstract:
A wave energy converter (WEC), for use in a body of water of depth Dw, includes a tubular structure and a piston within the tubular structure where the relative motion between the piston and the tubular structure is used to generate electric power. The length (L) of the tubular structure may be selected to have a predetermined value based on the fact that: (a) the efficiency of the power generated by WEC increases as the length “L” of the tubular structure increases from a minimal value until L reaches an optimal value; and (b) the efficiency decreases as L is increased beyond the optimal value due to the increased mass of the water that the tubular structure and the piston have to move.
Abstract:
The invention relates to active impedance matching systems (AIMS) and methods for increasing the efficiency of a wave energy converter (WEC) having a shaft and a shell intended to be placed in a body of water and to move relative to each other in response to forces applied to the WEC by the body of water. The system includes apparatus for: (a) extracting energy from the WEC and producing output electric energy as a function of the movement of the shell (shaft) relative to the shaft (shell): and (b) for selectively imparting energy to one of the shell and shaft for causing an increase in the displacement and velocity (or acceleration) of one of the shell and shaft relative to the other, whereby the net amount of output electrical energy produced is increased. The apparatus for extracting energy and for selectively supplying energy may be implemented using a single device capable of being operated bi-directionally, in terms of both direction and force, or may be implemented by different devices.
Abstract:
Apparatus for converting energy contained in surface waves on a body of water to useful energy comprises a float from which is suspended a fully or effectively fully submerged inverted cup-shaped member having a closed top end and an open bottom end. Disposed within the top space is a compressible fluid separated by a flexible membrane from a column of water filling the bottom open end of the submerged member. Passing surface waves cause pressure variations at the bottom end of the member causing changes in the water column height and corresponding changes in the buoyancy of the member. The buoyancy changes induce vertical oscillations of the member relative to the float and known means are used for converting the relative movements of the float and submerged member to useful energy. Preferably, the float vertically oscillates in synchronization with the passing waves, and the vertical movements of the float increase the relative movements between the float and the submerged member.
Abstract:
The stability and power conversion efficiency of a wave energy converter (WEC) which includes a float, a spar and a power taken device (PTO) connected between the spar and the float is increased by connecting a heave plate to the spar in a very secure manner and by carefully limiting the movement between the float and spar to one direction (i.e., up-down motion). Buoyancy chambers may be attached to the WEC to facilitate its transportation and deployment. The WEC may be formed in sections and assembled at, or close to, the point of deployment.
Abstract:
In a wave energy converter (WEC) for capturing energy contained in surface waves on large bodies of water, one or both of the floats used in the WEC has an internal spring system including a weight suspended from a spring mechanism having a selectively variable spring constant for allowing vertical oscillations of the weight in response to bobbing motions of the float The mechanical impedance of the system is a function of the oscillations of the weight, hence the system is tunable to selected values of mechanical impedance for optimal coupling with the prevailing waves.
Abstract:
An exercise repetition sensor comprises an electricity generator, such as an electricity generator, which is coupled to an exercise system, where the electricity generator is capable of sensing exercise movements of any size or intensity on the exercise system. The electricity generator can be based on a number of electrical, magnetic, or optical sensing principles. For example, an electricity generator comprising an electricity generator includes a spindle that is coupled to one or more parts that move in proportion to an applied force. The voltage-generator generates an electrical current as the spindle moves, and sends the electrical current to an electronic display interface. In one embodiment, the voltage-generator sends a positive direct current through one of two circuit wires to the electronic console, such that the electronic console can immediately identify that the user has performed an exercise repetition.
Abstract:
Apparatus embodying the invention include a damping plate attached to the submerged end of a spar-like element floating in a body of water. The spar like element tends to move up and down in a vertical direction in response to passing waves. The damping plate has a pair of oppositely facing surfaces extending transversely to the vertical direction of the movement of the spar-like element and vertical structures (“lips”) mounted on the oppositely facing surfaces for increasing the effective mass of water pushed during movement of the damping plate through the water. Damping plates with lips, as per the invention, may be used in wave energy converters to control the relative motion between the spar-like element and a float to increase the energy produced.